Как_сделать_дроссель_100_мкгн

Как_сделать_дроссель_100_мкгн

Вот понадобился мне дросселек 4.7 мкГн / 2 А . Где его взять? Не тащиться-же в магазин из-за этого! Покопался я в своих закромах, ничего похожего не нашел. Зато есть куча дросселей на 100мкГн / 0.66А. И тут меня озарило…

Эти готовые катушки уже рассчитаны. Нам известна их индуктивность ( 101 на фотографии значит, что катушка на 100мкГн ) и максимальный ток. Если ток неизвестен – его легко узнать. Нам осталось только используя уже известные параметры, пересчитать и перемотать катушку.

Начнем с индуктивности. С ней все просто. nt – количество витков которое нам нужно намотать, np –количество которое было намотано, Lt – индуктивность, которую нам нужно получить, Lp – индуктивность которая была.

К примеру, я размотал дроссель на 100мкГн, там оказалось 46витков. Я хочу получить 4.7мкГн. Мне нужно намотать 10 витков.

Теперь разберемся с током. Это немного сложнее, особенно, если вы не знаете на какой ток был ваш исходный дроссель. Если все-таки не знаете, меряем диаметр дросселя и его высоту. И ищем его в даташите на подобные катушки, к примеру, в bourns RLB или еще где-нибудь в интернете. Я, например, нашел что мой дроссель может пропустить 0.66А

Дальше можно поступить двумя путями – найти дроссель с такой-же индуктивностью как вам нужно в этом-же даташите и считать что вы намотаете точно такой-же. Второй вариант – рассчитать максимальный ток по формуле:

В моем примере максимальный ток получается равным 3А, что меня очень обрадовало.

После намотки получилась вот такая красота:

Проверяем что мы насчитали:

Как видно, получилось довольно близко к желаемым 4.7мкГн.

Каждый любитель мастерить электронные приборы и поделки, не раз сталкивался с необходимостью намотать катушку индуктивности или дроссель. В схемах конечно указывают число намотки катушки и каким проводом, но что делать если указанного диаметра провода нет в наличии, а есть намного толще или тоньше??

Я расскажу вам как это сделать на моем примере.
Хотел я сделать вот эту схему Радио управление 10 команд . Намоточные данные катушек в схеме указаны ( 6 витков провода 0.4 на каркасе 2мм ) эти намоточные данные соответствуют 47nH-нано Генри, все бы нормально но провод у меня был 0.6мм. Помощь я нашел в программе Coil32.

Читайте также:  Каким_лаком_покрывают_гитары

Возвращаемся к нашей схеме, например я вам не говорил какая индуктивность катушек и у вас есть только намоточные данные, как же нам теперь узнать какая же их индуктивность??

Для этого вставляем в окошки известные нам данные этих катушек , длину намотки подбираем до тех пор пока вычисления не совпадут с нашими данными.

Вот и все, катушка готова.

Но если вы например уже вытравили платы, а размер контактов для катушки остался прежним, то есть для катушки с длиной намотки 3мм, а у вас же получилась на 5.5мм ( намного больше и впаять рядом 3 таких катушки будет проблематично)

Значит нужно нашу катушку уменьшить, ставим в окошко диаметр каркаса не 2мм, а 4мм. И наша катушка с проводом 0.6мм, уменьшается в длине с 5.5мм до 3мм и число витков 3.5, +/- 1-2 нГн роли большой не сыграет, зато мы сможем легко впаять наши индуктивности.

Вот и все, надеюсь моя статья поможет вам. В этой программе можно рассчитывать разные катушки, выбирайте из списка какая вам нужна и все у вас получится.

Содержание / Contents

↑ Теория

В наше время можно недорого купить микросхемы, позволяющие собирать простые и эффективные импульсные источники питания, например, MC34063 или LM2576. Есть даже программы-калькуляторы, помогающие определить номиналы деталей или можно воспользоваться datasheet. Но возникает одна маленькая проблема — нужно намотать дроссель, который должен обладать определенной индуктивностью и сохранять эту индуктивность при значительном токе подмагничивания — до нескольких Ампер .

К сожалению, ассортимент готовых индуктивностей в магазинах беден и нужные часто недоступны. В то же время можно купить ферритовые сердечники или взять их, например, из раскуроченных электронных балластов для люминесцентных или галогеновых ламп.
Определить индуктивность можно без специальных приборов с помощью компьютера и программного пакета Arta Software, о чем я писал в прошлых публикациях (LIMP — программный измеритель RCL).

Сложнее определить, войдет сердечник в насыщение (и нарушится нормальная работа блока питания) или нет. Многолетний редактор журнала «Радио» и автор множества статей по тематике импульсных преобразователей Сергей Алексеевич Бирюков написал статью «Дроссели для импульсных источников питания на ферритовых кольцах». В ней есть практическая схема, позволяющая увидеть и измерить ток насыщения на экране осциллографа.

Читайте также:  Как_снять_полку_в_шкафу_видео

В статье множество формул и таблиц, я же постараюсь объяснить всё ненаучно, на пальцах.

Для того чтобы сделать дроссель надо рассчитать или взять из datasheet нужную индуктивность. Берем сердечник, на котором будем наматывать катушку и мотаем несколько десятков витков удобным проводом, например, 0,3 мм. Измеряем индуктивность, затем рассчитываем, сколько надо витков для будущего дросселя. Для этого вспоминаем, что индуктивность прямо пропорциональна квадрату числа витков. Если намотано 30 витков и индуктивность 20 мкГн, то чтобы получить 180 мкГн, надо намотать 90 витков.

Теперь вспомним что такое Ампер -витки. Это произведение числа витков на протекающий ток. Сердечник одинаково намагнитят 200 витков при токе 1 А или 1 виток при токе 200 А, или 50 витков при токе 4 А. Значит, если мы узнаем, при каком токе насытится сердечник от нашей пробной катушечки в 30 витков, мы легко узнаем какой ток выдержит наш дроссель с рабочей катушкой в 90 витков.

Надо только не забывать, что индуктивность лучше делать немного бОльшей, чем рекомендуется и что при уменьшении числа витков индуктивность падает гораздо быстрее, чем растет допустимый ток. Кроме того, для уменьшения потерь надо использовать толстый провод.
Не исключено, что данный сердечник может не подойти, тогда, если это кольца, можно сложить два-три кольца или взять другой типоразмер или даже включить два дросселя последовательно.

↑ Схема

Я собрал измеритель на небольшой плате, детали самые обычные, там, где удобно, ставлю SMD и вам советую. Полевой транзистор — любой с нужной проводимостью на ток от 20 А и выше, с низким сопротивлением канала в открытом состоянии, можно низковольтный. Я поставил IFRP150. Стабилизатор 6 В на микросхеме 78L06. Если ее нет, можно ставить 78L05 и добавить 1-2 диода типа КД522 в разрыв общего провода 78L05 анодом к стабилизатору. Емкости С3С4 я поставил по 2200 мкФ на 35 В. Номиналы деталей не критичны. В процессе испытаний я понял, что нужна небольшая доработка схемы. Вместо VD3 VD4 я поставил один стабилитрон Д816В. Для увеличения импульса тока до 12 А между базой и эмиттером VT1 надо поставить резистор с номиналом, как у R5. Эти небольшие изменения позволяют испытать готовые индуктивности в несколько миллигенри. Номинал R4 я уменьшил втрое, что сделало луч на экране более ярким. Сигнал к входу синхронизации осциллографа снимается с вывода 11 микросхемы через резистор 1 кОм.

Читайте также:  Пик_2_реле_времени_схема

↑ Наладка

Вместо L1 подключить резистор примерно 1 кОм и проверить прямоугольную форму импульсов на выводе 11 микросхемы, на стоке, проверить регулировку изменения скважности от R3. При исправных деталях наладка не требуется. Если необходимо, можно по вкусу изменить частоту и диапазон регулировки емкостью С2 и резисторами R3R4.

↑ Работа с прибором

Возможны варианты – перелома не будет, а будет треугольник, который не растет при повороте регулятора R3. Это значит, насыщения нет, надо увеличить число витков катушки. Или форма не треугольная, а сглаженная – велико активное сопротивление катушки.
Если вы проверяете трансформатор, будьте осторожны, на неподключенных обмотках может быть значительное напряжение! И категорически запрещаю проверять так строчные телевизионные трансформаторы или силовые трансформаторы компьютерных блоков питания! Если катушка имеет индуктивность несколько миллигенри, она накапливает значительную энергию, которую поглощает мощный стабилитрон (он за этим и нужен), при этом он сильно разогревается (я это почувствовал по запаху), поэтому измерения таких катушек должны быть непродолжительны (я не спеша настраиваю осциллограф с небольшим импульсом, а потом поворачиваю ось R3 и засекаю ток перелома).

↑ Печатная плата

↑ Итого

Для тех, кто занимается импульсными источниками питания, данный прибор будет полезен. Радиолюбитель обычно делает единичные устройства из тех узлов из деталей, которые может найти. Я не согласен с теми, кто пишет, что для LM2576 дроссель можно намотать на гвозде. Работать он может и будет (за счет внутримикросхемных ограничителей и предохранителей), но получить хороший КПД и хорошую стабилизацию не получится. Прибор, конечно, не первой необходимости, но дешев, прост и портативен, поэтому иметь его полезно.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, учредитель журнала «Датагор»

Ссылка на основную публикацию
Как_сделать_голубой_пластилин
При лепке из пластилина часто приходится смешивать разные цвета. Чтобы не ошибиться с выбором цвета, надо сначала попробовать смешать маленькие...
Как_рассчитать_дроссель_для_проверки_якорей
«Признавая свои ошибки, мы находим источник силы» Решил сделать прибор для проверки якорей на короткозамкнутые витки и прочее. Пригодится если...
Как_сделать_батарейку_ящеров
Можно найти в сундуке ящеров данжа джунглей или выбить из ящера или летающей змеи с шансом 2%. Имеет крафтИнгредиенты Стекло...
Как_сделать_декоративную_штукатурку_волнами
Штукатурка Волна по праву занимает лидирующие позиции среди декоративных отделок из-за простоты нанесения и высоких эстетических и эксплуатационных показателей. Может...
Adblock detector