Электрическое_поле_напряженность_электрического_поля

Электрическое_поле_напряженность_электрического_поля

Тема 7. "Электродинамика. Электрическое поле".

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Электрический заряд q — физическая величина, определяющая интенсивность электромагнитного взаимодействия.

Атомы состоят из ядер и электронов. В состав ядра входят положительно заряженные протоны и не имеющие заряда нейтроны. Электроны несут отрицательный заряд. Количество электронов в атоме равно числу протонов в ядре, поэтому в целом атом нейтрален.

Заряд любого тела: q = ±Ne , где е = 1,6*10 -19 Кл — элементарный или минимально возможный заряд (заряд электрона), N — число избыточных или недостающих электронов. В замкнутой системе алгебраическая сумма зарядов остается постоянной:

Точечный электрический заряд — заряженное тело, размеры которого во много раз меньше расстояния до другого наэлектризованного тела, взаимодействующего с ним.

Два неподвижных точечных электрических заряда в вакууме взаимодействуют с силами, направленными по прямой, соединяющей эти заряды; модули этих сил прямо пропорциональны произведению зарядов и обратно пропорциональны квадрату расстояния между ними:

где — электрическая постоянная.

где 12 — сила, действующая со стороны второго заряда на первый, а 21 — со стороны первого на второй.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ

Факт взаимодействия электрических зарядов на расстоянии можно объяснить наличием вокруг них электрического поля — материального объекта, непрерывного в пространстве и способного действовать на другие заряды.

Поле неподвижных электрических зарядов называют электростатическим.

Характеристикой поля является его напряженность.

Напряженность электрического поля в данной точке — это вектор, модуль которого равен отношению силы, действующей на точечный положительный заряд, к величине этого заряда, а направление совпадает с направлением силы.

Напряженность поля точечного заряда Q на расстоянии r от него равна

Принцип суперпозиции полей

Напряженность поля системы зарядов равна векторной сумме напряженностей полей каждого из зарядов системы:

Диэлектрическая проницаемость среды равна отношению напряженностей поля в вакууме и в веществе:

Она показывает во сколько раз вещество ослабляет поле. Закон Кулона для двух точечных зарядов q и Q , расположенных на расстоянии r в среде c диэлектрической проницаемостью :

Напряженность поля на расстоянии r от заряда Q равна

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРО-СТАТИЧЕСКОМ ПОЛЕ

Между двумя большими пластинами, заряженными противоположными знаками и расположенными параллельно, поместим точечный заряд q .

Так как электрическое поле между пластинами с напряженностью однородное, то на заряд во всех точках действует сила F = qE , которая при перемещении заряда на расстояние вдоль совершает работу

Эта работа не зависит от формы траектории, то есть при перемещении заряда q вдоль произвольной линии L работа будет такой же.

Работа электростатического поля по перемещению заряда не зависит от формы траектории, а определяется исключительно начальным и конечным состояниями системы. Она, как и в случае с полем сил тяжести, равна изменению потенциальной энергии, взятому с противоположным знаком:

Из сравнения с предыдущей формулой видно, что потенциальная энергия заряда в однородном электростатическом поле равна:

Потенциальная энергия зависит от выбора нулевого уровня и поэтому сама по себе не имеет глубокого смысла.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И НАПРЯЖЕНИЕ

Потенциальным называется поле, работа которого при переходе из одной точки поля в другую не зависит от формы траектории. Потенциальными являются поле силы тяжести и электростатическое поле.

Работа, совершаемая потенциальным полем, равна изменению потенциальной энергии системы, взятой с противоположным знаком:

Потенциал — отношение потенциальной энергии заряда в поле к величине этого заряда:

Потенциал однородного поля равен

где d — расстояние, отсчитываемое от некоторого нулевого уровня.

Потенциальная энергия взаимодействия заряда q с полем равна .

Поэтому работа поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2 составляет:

Величина называется разностью потенциалов или напряжением.

Напряжение или разность потенциалов между двумя точками — это отношение работы электрического поля по перемещению заряда из начальной точки в конечную к величине этого заряда:

НАПРЯЖЕННОСТЬ ПОЛЯ И РАЗНОСТЬ ПОТЕНЦИАЛОВ

При перемещении заряда q вдоль силовой линии электрического поля напряженностью на расстояние Δ d поле совершает работу

Так как по определению, то получаем:

Отсюда и напряженность электрического поля равна

Итак, напряженность электрического поля равна изменению потенциала при перемещении вдоль силовой линии на единицу длины.

Если положительный заряд перемещается в направлении силовой линии, то направление действия силы совпадает с направлением перемещения, и работа поля положительна:

Тогда , то есть напряженность направлена в сторону убывания потенциала.

Напряженность измеряют в вольтах на метр:

Напряженность поля равна 1 В/м, если напряжение между двумя точками силовой линии, расположенными на расстоянии 1 м, равна 1 В.

Если независимым образом измерять заряд Q , сообщаемый телу, и его потенциал φ, то можно обнаружить, что они прямо пропорциональны друг другу:

Величина С характеризует способность проводника накапливать электрический заряд и называется электрической емкостью. Электроемкость проводника зависит от его размеров, формы, а также электрических свойств среды.

Электроёмкостъ двух проводников — отношение заряда одного из них к разности потенциалов между ними:

Емкость тела равно 1 Ф , если при сообщении ему заряда 1 Кл оно приобретает потенциал 1 В.

Конденсатор — два проводника, разделенные диэлектриком, служащие для накопления электрического заряда. Под зарядом конденсатора понимают модуль заряда одной из его пластин или обкладок.

Способность конденсатора накапливать заряд характеризуется электроемкостью, которая равна отношению заряда конденсатора к напряжению:

Читайте также:  Каменный_поддон_для_душа

Емкость конденсатора равна 1 Ф, если при напряжении 1 В его заряд равен 1 Кл.

Емкость плоского конденсатора прямо пропорциональна площади пластин S , диэлектрической проницаемости среды , и обратно пропорциональна расстоянию между пластинами d:

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА.

Точные эксперименты показывают, что W=CU 2 /2

Так как q = CU , то

Плотность энергии электрического поля

где V = Sd — объем, занимаемый полем внутри конденсатора. Учитывая, что емкость плоского конденсатора

а напряжение на его обкладках U=Ed

Пример. Электрон, двигаясь в электрическом поле из точки 1 через точку 2, увеличил свою скорость от 1000 до 3000 км/с. Определите разность потенциалов между точками 1 и 2.

Так как электрон увеличил свою скорость, то ускорение и сила Кулона сонаправлены со скоростью. Значит, электрон движется против силовых линий поля. Изменение кинетической энергии электрона равно работе поля :

Ответ: разность потенциалов равна — 22,7 В.

Лекция 9.

Основные характеристики электрического поля. Электрический диполь. Поле диполя. Диполь в электрическом поле. Первичные механизмы воздействия электростатических полей на биологические объекты. Применение постоянных электрических полей в физиотерапии. Физические основы электрографии тканей и органов. Электрокардиография. Дипольный эквивалентный электрический генератор сердца. Теория отведений Эйнтховена. Понятие о мультипольном эквивалентном электрическом генераторе сердца. Электрокардиограф.

Электрическое поле

Электрическое поле есть разновидность материи, посредством которой осуществляется силовое воздействие на электрические заряды, находящиеся в этом поле Характе­ристики электрического поля, которое генерируется биологическими структурами, являются источником информации о состоянии организма

12.1. Напряженность и потенциал — характеристики электрического поля

Силовой характеристикой электрического поля является напряженность, равная отношению силы, действующей в данной точке поля на точечный заряд, к этому заряду

(12.1)

Напряженность — вектор, направление которого совпадает с направлением силы, действующей в данной точке поля на положительный точечный заряд.

Напряженность электрического поля в произвольных точках аналитически задается следующими тремя уравнениями:

где Ех, Еу и Ez — проекции вектора напряженности на соответствующие координатные оси, введенные для описания поля. Электрическое поле графически удобно представлять силовыми линиями, касательные к которым совпадают с направлением вектора напряженности в соответствующих точках поля.

Обычно эти линии проводят с такой густотой, чтобы число линий, проходящих сквозь единичную площадку, перпендикулярную им, было пропорционально значению напряженности электрического поля в месте расположения площадки.

Представим себе, что зарядq перемещается в электрическом поле по траектории 1-а-2 (рис. 12.1). Силы поля при этом совершают работу, которую можно выразить через напряженность [см. (12.1)]:

(12.3)

где dl — элементарное перемещение; El — проекция вектора на направление . Покажем, чторабота сил электростатического поля (электрического поля неподвижных зарядов) не зависит от траектории, по которой перемещается заряд в этом поле. Поля, обладающие таким свойством, называют потенциальными.

Пусть заряд q переместился по замкнутой траектории 1-а-2-б-1 (рис. 12.1). Так как поле электростатическое, то положение зарядов, создающих поле, при этом не изменилось, и потенциальная энергия, зависящая от их взаимного положения, осталась прежней. Поэтому работа сил электростатического поля по переме­щению заряда по замкнутой траектории равна нулю:

Так как силы, действующие на заряд q, определяются его положением в поле, то выражения для работ сил поля при перемещении заряда по одной и той же траектории в противоположных направлениях отличаются только знаком:

Подстановка этого выраже­ния в (12.4)дает

Равенство (12.5) означает, что работа сил электростатического поля не зависит от траектории заряда, а зависит от величины заряда, положения начальной и конечной точек траектории и от напряженности поля.

На основании этого свойства вводят понятие разности потенциалов , которая для электростатического поля равна напряжению U.

Разностью потенциалов между точками поля называют отношение работы, совершаемой силами поля при перемеще­нии точечного положительного заряда из одной точки поля в другую, к этому заряду:

(12.6)

где 1 и 2 — потенциалы в точках 1 и 2 электрического поля, U12 — напряжение между этими точками. Разность потенциалов между двумя точками зависит от положения выбранных точек и от на­пряженности электрического поля, как следует из (12.6).

Наряду с разностью потенциалов в качестве характеристики электрического поля используют понятие потенциала. Однако для данной точки поля оно имеет однозначный смысл только в том случае, если задан потенциал какой-либо произвольной точки поля. На практике принято считать, что потенциал проводников, соединенных с землей, или потенциал шасси, на котором смонти­ровано радиоустройство (и в том и в другом случаях говорят о за­землении), равны нулю. В теоретических задачах обычно считают равным нулю потенциал бесконечно удаленных точек.

Вычислим потенциал поля точечного заряда, расположенного воднородном изотропном диэлектрике с диэлектрической проницаемостью (рис. 12.2). Пусть точки 1 и 2 находятся на одной силовой линии ни расстояниях соответственноr1иr2от источника поля —заряда Q. Проинтегрируем выражение (12.6) по отрезку 12, учитывая, что в соответствии с законом Кулона (для точечного заряда) Еl = E = Q/(4 r 2 ) и dr = dl:

(12.7)

где   8,85 • 10 12 Ф/м — электрическая постоянная 1 .

( 1 Размерность электрической постоянной  выражается также в виде , что следует из закона Кулона).

Предположим, что потенциал в бесконечно удаленной точке равен нулю: 2 0 при r2  . Тогда из (12.7) получаем

Читайте также:  Сериал_клон_саид_и_жади

или в более общем виде (12.8)

Могли быть и другие предположения относительно значения потенциала в бесконечно удаленной точке, однако сделанное выше допущение привело к наиболее простому выражению (12.8), по которому обычно и вычисляют потенциал поля точечного заряда.

Потенциалы электрического поля в различных точках наглядно можно представить в видеповерхностей одинакового потенциала (эквипотенциальных поверхностей). Обычно проводят экви­потенциальные поверхности, отличающиеся от соседних на одно ито же значение потенциала. На рис. 12.3 изображены эквипотенциальные поверхности (штриховые линии) и силовые линии (сплошные) поля двух разноименных одинаковых точечных зарядов.

Аналитически зависимость электрического потенциала от координат в разных точках поля задается некоторой функцией координат

которая в частных случаях может иметь, например, вид (12.8). Так как напряженность электрического поля определяется через силу, а потенциал — через работу сил поля, то эти характеристики связаны между собой аналогично силе и работе. Интегральная зависимость напряженности поля и потенциала дается формулой (12.6) или выражением

(12.10)

Здесь с учетом знака «-» изменены пределы интегрирования: верхнему пределу интеграла соответствует в левой части уменьшаемое 2, нижнему — вычитаемое1.

Получим дифференциальную связь между Е и.Предположим, что точки 2 и 1 расположены сколь угодно близко, тогда из (12.10) получим

(12.11)

Производная от потенциала по направлению d/dlхарактеризует отношение приращения потенциала d к соответствующему расстояниюdl в некотором направленииl;Еl — проекция вектора на это направление.

Смысл формулы (12.11) виден из рис. 12.4. В точке 0 проведенвектор , который спроецирован на направления l1, l2 и l3. Эти проекции по модулю равны производным от потенциала по соответствующим направлениям: d/dl1, d/dl2, d/dl3.Наиболь­шее изменение потенциала, приходящееся на единицу длины, происходит вдоль прямой, совпадающей с ; знак «минус» в (12.11) означает, что потенциал быстрее всего убывает в направлении и быстрее всеговозрастает в направлении —Е. Можно сказать, что вектор равен взятому с обратным знаком градиентупотенциала:

(12.12)

В направлении, перпендикулярном силовой линии, имеем

(12.13)

Из этого следует, что силовые линии и эквипотенциальные поверхности взаимно перпендикулярны. Если поле однородно, например поле плоского конденсатора, то из формулы (12.6) находим что для двух точек, расположенных на одной силовой линии на расстоянииl,

(12.14)

Учитывая (12.11) и (12.9), можно записать проекции вектора напряженности электрического поля по трем координатным осям:

(12.15)

Тогда напряженность определяют по формуле

(12.16)

Если поле создано N точечными зарядами, то напряженность в некоторой точке можно вычислить как векторную сумму напряженностей полей, создаваемых в этой точке каждым зарядом отдельно (принцип суперпозиции):

(12.17)

а электрический потенциал в этой точке — как алгебраическую сумму потенциалов от каждого заряда, предполагая, что потенциал бесконечно удаленных точек равен нулю:

(12.18)

Существующие электроизмерительные приборы рассчитаны на измерение разности потенциалов, а не напряженности. Ее можно найти из этих измерений, используя связь и .

Электрическое поле напряженность электрического поля

Из сказанного выше ясно, что напряженность электрического поля — одна из основных фундаментальных величин классической электродинамики. В этой области физики можно назвать сопоставимыми с ней по значению только вектор магнитной индукции (вместе с вектором напряженности электрического поля образующий тензор электромагнитного поля) и электрический заряд. С некоторой точки зрения столь же важными представляются потенциалы электромагнитного поля (образующие вместе единый электромагнитный потенциал).

  • Остальные понятия и величины классической электродинамики, такие как электрический ток, плотность тока, плотность заряда, вектор поляризации, а также вспомогательные поле электрической индукции и напряженность магнитного поля — хотя достаточно важны и значимы, но их значение гораздо меньше, и по сути могут считаться полезными и содержательными, но вспомогательными величинами.

Приведем краткий обзор основных контекстов классической электродинамики в отношении напряженности электрического поля.

Сила, с которой действует электромагнитное поле на заряженные частицы

Полная сила, с которой электромагнитное поле (включающее вообще говоря электрическую и магнитную составляющие) действует на заряженную частицу, выражается формулой силы Лоренца:

где q — электрический заряд частицы, — ее скорость, — вектор магнитной индукции (основная характеристика магнитного поля), косым крестом обозначено векторное произведение. Формула приведена в единицах СИ.

Как видим, эта формула полностью согласуется с определением напряженности электрического поля, данном в начале статьи, но является более общей, т.к. включает в себя также действие на заряженную частицу (если та движется) со стороны магнитного поля.

В этой формуле частица предполагается точечной. Однако эта формула позволяет рассчитать и силы, действующие со стороны электромагнитного поля на тела любой формы с любым распределением зарядов и токов — надо только воспользоваться обычным для физики приемом разбиения сложного тела на маленькие (математически — бесконечно маленькие) части, каждая из которых может считаться точечной и таким образом входящей в область применимости формулы.

Остальные формулы, применяемые для расчета электромагнитных сил (такие, как, например, формула силы Ампера) можно считать следствиями [5] фундаментальной формулы силы Лоренца, частными случаями ее применения итп.

Однако для того, чтобы эта формула была применена (даже в самых простых случаях, таких, как расчет силы взаимодействия двух точечных зарядов), необходимо знать (уметь рассчитывать) и чему посвящены следующие параграфы.

Уравнения Максвелла

Достаточным вместе с формулой силы Лоренца теоретическим фундаментом классической электродинамики являются уравнения электромагнитного поля, называемые уравнениями Максвелла. Их стандартная традиционная форма представляет собой четыре уравнения, в три из которых входит вектор напряженности электрического поля:

Читайте также:  Предусилитель_на_tl072_схема

Здесь — плотность заряда, — плотность тока, — универсальные константы (уравнения здесь записаны в единицах СИ).

Здесь приведена наиболее фундаментальная и простая форма уравнений Максвелла — так называемые "уравнения для вакуума" (хотя, вопреки названию, они вполне применимы и для описания поведения электромагнитного поля в среде). Подробно о других формах записи уравнений Максвелла — см. основную статью.

Этих четырех уравнений вместе с пятым — уравнением силы Лоренца — в принципе достаточно, чтобы полностью описать классическую (то есть не квантовую) электродинамику, то есть они представляют ее полные законы. Для решения конкретных реальных задач с их помощью необходимы еще уравнения движения "материальных частиц" (в классической механике это законы Ньютона), а также зачастую дополнительная информация о конкретных свойствах физических тел и сред, участвующих в рассмотрении (их упругости, электропроводности, поляризуемости итд итп), а также о других силах, участвующих в задаче (например, о гравитации), однако вся эта информация уже не входит в рамки электродинамики как таковой, хотя и оказывается зачастую необходимой для построения замкнутой системы уравнений, позволяющих решить ту или иную конкретную задачу в целом.

«Материальные уравнения»

Такими дополнительными формулами или уравнениями (обычно не точными, а приближенными, зачастую всего лишь эмпирическими), которые не входят непосредственно в область электродинамики, но поневоле используются в ней ради решения конкретных практических задач, называемыми «материальными уравнениями», являются, в частности:

  • Закон Ома,
  • Закон поляризации
  • в разных случаях многие другие формулы и соотношения.

Связь с потенциалами

Связь напряженности электрического поля с потенциалами в общем случае такова:

где — скалярный и векторный потенциалы. Приведем здесь для полноты картины и соответствующее выражение для вектора магнитной индукции:

В частном случае стационарных (не меняющихся со временем) полей, первое уравнение упрощается до:

Это выражение для связи электростатического поля с электростатическим потенциалом.

Электростатика

Важным с практической и с теоретической точек зрения частным случаем в электродинамике является тот случай, когда заряженные тела неподвижны (например, если исследуется состояние равновесия) или скорость их движения достаточно мала чтобы можно было приближенно воспользоваться теми способами расчета, которые справедливы для неподвижных тел. Этим частным случаем занимается раздел электродинамики, называемый электростатикой.

Как мы уже заметили выше, напряженность электрического поля в этом случае выражается через скалярный потенциал как

то есть электростатическое поле оказывается потенциальным полем. ( в этом случае — случае электростатики — принято называть электростатическим потенциалом).

  • Также и обратно

Уравнения поля (уравнения Максвелла) при этом также сильно упрощаются (уравнения с магнитным полем можно исключить, а в уравнение с дивергенцией можно подставить ) и сводятся к уравнению Пуассона:

а в областях, свободных от заряженных частиц — к уравнению Лапласа:

Учитывая линейность этих уравнений, а следовательно применимость к ним принципа суперпозиции, достаточно найти поле одного точечного единичного заряда, чтобы потом найти потенциал или напряженность поля, создаваемого любым распределением зарядов (суммируя решения для точечного заряда).

Теорема Гаусса

Очень полезной в электростатике оказывается теорема Гаусса, содержание которой сводится к интегральной форме единственного нетривиального для электростатики уравнения Максвелла:

где интегрирование производится по любой замкнутой поверхности S (вычисляя поток через эту поверхность), Q — полный (суммарный) заряд внутри этой поверхности.

Эта теорема дает крайне простой и удобный способ расчета напряженности электрического поля в случае, когда источники имеют достаточно высокую симметрию, а именно сферическую, цилиндрическую или зеркальную+трансляционную. В частности, таким способом легко находится поле точечного заряда, сферы, цилиндра, плоскости.

Напряжённость электрического поля точечного заряда

В единицах СИ

Для точечного заряда в электростатике верен закона Кулона

. .

Исторически закон Кулона был открыт первым, хотя с теоретической точки зрения уравнения Максвелла более фундаментальны. С этой точки зрения он является их следствием. Получить этот результат проще всего исходя из теоремы Гаусса, учитывая сферическую симметрию задачи: выбрать поверхность S в виде сферы с центром в точечном заряде, учесть, что направление будет очевидно радиальным, а модуль этого вектора одинаков везде на выбранной сфере (так что E можно вынести за знак интеграла), и тогда, учитывая формулу для площади сферы радиуса r: , имеем:

откуда сразу получаем ответ для E.

Ответ для получается тогда интегрированием E:

Для системы СГС

Формулы и их вывод аналогичны, отличие от СИ лишь в константах.

Напряженность электрического поля произвольного распределения зарядов

По принципу суперпозиции для напряженности поля совокупности дискретных источников имеем:

Для непрерывного распределения аналогично:

где V — область пространства, где расположены заряды (ненулевая плотность заряда), или всё пространство, — радиус-вектор точки, для которой считаем , — радиус-вектор источника, пробегающий все точки области V при интегрировании, dV — элемент объема. Можно подставить x,y,z вместо , вместо , вместо dV.

Системы единиц

В системе СГС напряжённость электрического поля измеряется в СГСЭ единицах, в системе СИ — в ньютонах на кулон или в вольтах на метр (русское В/м, международное V/m).

Ссылка на основную публикацию
Экраны_для_ванной_раздвижные_фото
Экраны под ванну раздвижные Наши покупатели чаще всего спрашивают: Из множества вариантов экранов для ванны самым удобным признается раздвижной экран....
Шторы_на_высокое_окно_в_лестничном_пролете
Портфолио "Интерьеры лестничных холлов" с окном " data-pinterest-text="Креативный дизайн интерьера лестницы в загородном доме. с окном" data-tweet-text="Креативный дизайн интерьера лестницы...
Шторы_роллы_на_окна_без_сверления
Купить рулонные шторы без сверления на окна Миниролло АБРИКОС рулонные шторы для окна. Характеристики: Тип: Рулонные шторы.Ширина: от 37 до...
Экраны_для_защиты_от_излучения
Экраны для защиты от излучения В различных областях техники довольно часто встречаются случаи, когда требуется уменьшить передачу теплоты излучением. Например,...
Adblock detector