Экран_для_транзистор_тестера

Экран_для_транзистор_тестера

Мультиприбор — GM328 для проверки радиоэлементов

Мультиметр-Частотомер-Генератор GM328 для проверки транзисторов, диодов, конденсаторов, индуктивности, сопротивлений…, а также для генерирования, измерения частоты сигнала…

В этой статье рассмотрим многофункциональный автоматический прибор — незаменимый помощник радиолюбителя. Его можно купить в Китае на всем известных сайтах или по ссылке в конце статьи.

Кроме функций мультиметра Mega328 автоматически определять практически любой подключаемый радиоэлемент, измерять его характеристики он также способен генерировать и измерять частоту сигнала.

Все отображается на цветном 160 х 128 ЖК-дисплее.

Способности мультиметра:

  • измеряет у биполярного транзистора коэффициент усиления и уровень порогового напряжения база-эмиттер,
  • определяет вывода, структуру и отображает ее на дисплее.
  • измеряет у MOSFET пороговое напряжение и ёмкость.
  • у транзисторов определяет наличие защитного диода.
  • при измерении стабилитрона пробивное напряжение не более 4,5 В.
  • при измерении конденсатора более 2 мкФ одновременно с ёмкостью измеряет эквивалентное последовательное сопротивление (ESR).
  • способен измерять два сопротивления одновременно, а также переменное сопротивление.

Отображаемое значение:

  • конденсатор: 25pf-100mF (разрешение 1pF)
  • индуктивность: 0,01 mH-20 H
  • сопротивление: 0,1 Ом — 50 МОм (разрешение 0,01 Ом)
  • Диоды и транзисторы с графическом отображении на экране структуры и параметров.

Технические характеристики:

  • Питание: от 6,8 до 12В, можно использовать 6F22 (9В)
  • Потребляемый ток (при пит.9В):30мА
  • Дисплей: ЖК 160 х 128 с подсветкой
  • Скорость тестирования: 2 сек. (до 1 мин. для конденсаторов большой ёмкости)
  • Ток тестирования: около 6mA
  • Ток выключения: 20nA
  • управление одной кнопкой и регулятором для выбора режима
  • автоматическое выключение.
  • есть возможность измерять smd компоненты
  • Размер платы: 7.8 х 6.2 см (Д х Ш)
  • Материал: PCB
  • Вес: 173 гр

На приборе установлен круговой переключатель с кнопкой (энкодер), с её помощью можно управлять тестером.
После запуска тестера нажмите кнопку и удерживайте, откроется меню :

  • В режиме «f — Генератор» прибор генерирует сигналы в диапазоне частот от 1Гц до 2МГц.
  • В режиме «Частотомер» прибор измеряет частоты до 2 МГц.
  • Транзистор тестер — Основной функционал тестера.
    Режим: 10-bit PWM — 10 бит ШИМ.
  • Режим: C+ESR TP1 : 3 — Непрерывное измерение емкости и ESR подключенных конденсаторов (запустив этот режим не нужно каждый раз нажимать на кнопу для запуска измерений, достаточно подсоединить конденсатор к щупам и тестер отобразит информацию, удобно при множественном тестировании)
  • Режим: «Самодиагностика» можно произвести изменение цвета и многие другие настройки.
  • Настройка контрастности дисплея.
  • Выключение.

Режим «Транзистор Тест»

В режиме «Транзистор Тест» можно определить тип и расположение выводов биполярного или полевого транзистора, диода, измерить проводимость биполярного транзистора, а также его коэффициент усиления. При этом несложно подобрать пару выходных транзисторов для усилителей по одинаковому коэффициенту усиления.

У диодов прибор измеряет падение напряжения и ёмкость P-N перехода, по этому можно сразу определить тип диода.

При проверке электролитического конденсатора, его следует сначала разрядить, в противном случае прибор можно вывести из строя!

Принципиальная схема мультиприбора GM-328

Некоторые ключевые узлы схемы:

Схема довольно простая. Ответственный узел собран на шести резисторах R1-6 — от точности этих резисторов зависит полученная точность прибора.

Узел формирования опорного напряжения собран на регулируемом стабилитроне TL431 и резисторе R15.

Узел управления питанием собран на транзисторах T1-3.

Схема сделана таким образом, что после нажатия на кнопку поступает питание на микроконтроллер, дальше он сам «удерживает» питание включенным и может сам себе его отключить при необходимости.

Чтобы база Т2 не «висела» в воздухе, лучше её соединить с эмиттером сопротивлением 100 — 300 кОм. Бывают случаи из за этого транзистор пробивает.

Стабилизатор питания 5В на IC2.

Генератор на кварцевом резонатор

Включение и калибровка

Для включения прибора надо нажать на ручку энкодера. после этого на процессор пойдет питание и одновременно он выдаст команду на узел управления питанием и будет сам удерживать его включенным.

Для начала прибор выдает на экран напряжение батареи и пытается перейти в режим проверки компонента.

Так как ничего не подключено, то он сообщает: «элемент отсутствует или поврежден».

Прибор не откалиброван и после этого выдает соответствующее сообщение:

Для калибровки необходимо замкнуть все три контакта панели (в нашем случае средний и два из левой и правой тройки) и включить прибор.

После сообщения — isolate probe следует убрать перемычку и оставить контакты свободными.

Затем, после соответствующего уведомления надо будет установить конденсатор ( в комплекте) на клеммы 1 и 3.

Калибровка

1.Заходим в меню, подержав кнопку включения пару секунд и выбрал режим Selftest.

Переход в меню — длительное удержание кнопки энкодера.

Перемещение по меню — вращение энкодера.

Выбор параметра или режима — короткое нажатие на кнопку энкодера.

Читайте также:  Циркулярная_пила_штурм_cs50186

2. Прибор выдает сообщение — «закоротите контакты». Для этого нужно соединить все три контакта вместе.

3. Прибор производит измерение сопротивления перемычки. После того, как закончена калибровка выйдет сообщение: «уберите перемычку».

4. Убираем перемычку, прибор продолжает ещё измерения уже без перемычки.

На этом этапе необходимо подключить к клеммам 1 и 3 конденсатор из комплекта (можно использовать и другой).

5. После установки конденсатора прибор продолжает измерения, во время всего процесса калибровки кнопку энкодера нажимать не надо, все происходит в автоматическом режиме.

Все! Калибровка успешно завершена!

Видеообзор с youtube

Купить данный прибор можно в Китае на сайтах AliExpress, Ebay, Gearbest и т.п.,

Универсальный тестер электронных компонентов

Каждый радиолюбитель не раз и не два сталкивался со следующей задачей: некий транзистор, или другой электронный компонент выпаян из печатной платы, или вынут из любимой коробки для САМЫХ НУЖНЫХ ВЕЩЕЙ. Если на нем есть маркировка, имеется паспорт на этот компонент, или можно получить документацию на него, то все в порядке. Но если маркировка не позволяет идентифицировать компонент, а документация отсутствует, то Вы можете понятия не иметь, что же это за радиодеталь!

Традиционный подход измерения всех параметров, который может помочь в определении типа компонента сложный и трудоемкий. Он может быть N-P-N, P-N-P, N или P-канальным MOSFET транзистором, сдвоенным диодом, тиристором, симистором и т.д., и т.п.

Где-то в 2005 году, когда стали доступны достаточно мощные микроконтроллеры, умного человека по имени Markus Frejek из Германии осенила идея, заключавшаяся в том, чтобы переложить на микроконтроллер нудную ручную работу по определению типа электронного компонента, а также его основных параметров.

Его проект был подхвачен несколькими энтузиастами, такими, например, как Karl-Heinz Kübbeler, который внес несколько полезных усовершенствований в практическую реализацию проекта.

В результате получился прибор, работа которого выглядит, как некое волшебство, особенно для непосвященных. Вы втыкаете в разъем некий неизвестный электронный компонент с двумя или тремя выводами, и через пару секунд на экране появляется информация о том, что это за компонент и каковы его основные электрические параметры.

Конечно, не все радиодетали могут быть определены корректно, и не все параметры будут измерены точно, но помощь такого прибора радиолюбителю просто неоценима!

Любому, кто работает с электроникой, требуется тестер радиоэлектронных компонентов. В большинстве случаев электронщики всех мастей обходятся цифровым мультиметром. Им можно проверить с достаточной точностью самые часто используемые электронные компоненты: диоды, биполярные транзисторы, конденсаторы, резисторы и пр.

Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким компонентам можно отнести, например, полевые транзисторы (как MOSFET, так и J-FET). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов – эквивалентное последовательное сопротивление (ЭПС или ESR).

Компания Мастер Кит предлагает MP700 — тестер параметров и исправности электронных компонентов (R/L/C, N/P/M, ESR), один из вариантов доработанного произведения Маркуса.

Тестер радиодеталей MP700 собран на микроконтроллере Atmega328p. Прибор питается от батарейки на 9V (типоразмер 6F22, «Крона»). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания, такого как PW1245, например. На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это сделано для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено три дополнительных клеммы, а для 3 уже четыре.

Каковы же возможности данного тестера?

  1. Измерение ёмкости и параметров электролитического конденсатора.

Для начала проверим электролитический конденсатор на 1000 мкФ * 16V. Подключаем один вывод электролита к выводу 1, а другой к выводу 3.

Внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить, иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.

Можно подключить один из выводов к клемме 2. Прибор сам определит, к каким выводам подключен конденсатор. Далее жмём на красную кнопку.

На экране результат: ёмкость — 1004 мкФ (1004 μF); ЭПС — 0,05 Ом (ESR = 0,05Ω); Vloss = 1,4%.

Тестер можно использовать для замера ёмкости у обычных конденсаторов с ёмкостью примерно от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMD) монтажа.

Читайте также:  Пассифлора_посадка_и_уход_в_открытом_грунте

При проверке конденсаторов, кроме ёмкости и ESR, универсальный тестер показывает ещё такой параметр, как Vloss. Что же он означает? Этот параметр косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Оно высокое, но не бесконечно большое. Благодаря этому сопротивлению конденсатор медленно разряжается из-за так называемого тока утечки.

Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.

Падение напряжения на обкладках конденсатора объясняется как внутренним рассеиванием заряда, так и сопротивлением между обкладками, которое имеется у всех конденсаторов, так как любой диэлектрик имеет, пусть и большое, но сопротивление.

Для керамических и электролитических конденсаторов высокий показатель Vloss в несколько процентов свидетельствует о плохом качестве конденсатора.

  1. Проверка полевых J-FET и MOSFET транзисторов.

Теперь давайте протестируем широко известный MOSFET транзистор IRFZ44N. Вставляем его в панель так, чтобы его выводы были подключены к клеммам 1,2,3.

Никаких правил подключения соблюдать не надо, как уже говорилось, прибор сам определить цоколёвку детали и выдаст результат на дисплей.

На дисплее, кроме цоколёвки транзистора и его типа (n-канальный MOSFET), тестер указывает величину порогового напряжения открытия транзистора VGS(th) (Vt = 3,74V) и ёмкость затвора транзистора Ciis (C = 2,51nF). Если заглянуть в даташит на IRFZ44N и найти там значение VGS(th), то можно обнаружить, что оно находится в пределах 2 — 4 вольт.

  1. Проверка биполярных транзисторов.

В качестве подопытного "кролика" возьмём отечественный КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6

0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).

Составные биполярные транзисторы тоже распознаёт. Вот только параметры определяются не точно. В данном случае составной транзистор не может иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750. Хотя, возможно транзистор неисправен.

То же для КТ972А (NPN) – структура определяется верно.

Кстати, стоит иметь в виду, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.

  1. Проверка диодов.

Образец для испытаний — диод 1N4007.

Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf. В техдокументации на диоды указывается как VF — Forward Voltage (иногда VFM). Заметим, что при разном прямом токе через диод величина этого параметра также меняется.

Для данного диода 1N4007: VF=677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.

Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).

Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!

Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.

Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.

  1. Проверка резисторов.

Тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. Вот так прибор определяет подстроечный резистор типа 3296 на 1 кОм. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов, что не удивительно.

Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома.

  1. Замер индуктивности катушек и дросселей.

На практике не менее востребована функция замера индуктивности у катушек и дросселей. И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае.

На дисплее результат измерения параметров дросселя на 330 мкГ (0,33 миллиГенри).

Кроме индуктивности дросселя (0,3 мГ) тестер определил его сопротивление постоянному току — 1 Ом (1,0Ω).

  1. Симисторы и тиристоры

Маломощные симисторы данный тестер проверяет без проблем. Пример — проверка симистора MCR22-8.

А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись "? No, unknown or damaged part", что в вольном переводе означает "Отсутствует, неизвестная или повреждённая деталь".

  1. Прибором можно проверить также и оптопары.
Читайте также:  Как_расшить_маленькое_платье

Правда, проверить такие «составные» детали приходится в несколько этапов, поскольку они состоят минимум из двух изолированных между собой частей.

Проверим оптопару TLP627 со стороны излучающего диода (выводы 1 и 2).

Как видим, тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V. Далее подключаем к тестеру 3 и 4 выводы оптопары – это сторона фототранзистора.

На этот раз тестер определил, что к нему подключили обычный диод. В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер "видит" только его.

Так мы проверили исправность оптопары TLP627. Похожим способом можно проверить и маломощное твёрдотельное реле типа К293КП17Р.

  1. Кроме всего прочего, универсальный тестер может замерять напряжение батареек и аккумуляторов.

Теперь о том, какие детали этим тестером проверить невозможно.

Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора прибор определил как неисправный. Возможно, это действительно так и есть.

Стабилитроны. Определятся как диод. Основных параметров стабилитрона вы не получите, но можно удостовериться в целостности P-N перехода. Производителем заявлено корректное распознавание стабилитронов с напряжением стабилизации менее 4,5V.

При ремонте всё-таки рекомендуется не полагаться на показания прибора, а заменять стабилитрон новым, так как бывает, что стабилитроны исправны, но напряжение стабилизации «гуляет».

Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные.

Динисторы. Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32V, как у распространённого DB3.

Ионисторы прибор также не распознаёт. Видимо, из-за большого времени заряда.

Варисторы определяются как конденсаторы.

Однонаправленные супрессоры определяются как диоды.

Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Такие показания явно свидетельствует о негодности радиодетали.

Стоит также учесть тот факт, что имеет место некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому рекомендуется повторно установить деталь в панель и провести еще одну или две проверки.

Поскольку прибор выполнен в классическом бескорпусном стиле DIY (что, кстати, уменьшает его стоимость), счастливые обладатели 3D-принтера, такого, например, как 3D MC7 Prime mini M — Модульный 3D принтер-конструктор, 3D START v2.0, могут напечатать для тестера корпус, специально для него разработанный. Файлы в формате .stl можно скачать на страничке сайта, посвященной тестеру.

В целом, прибор имеет значительно больше преимуществ, чем недостатков. Мы уверены, что тестер электронных компонентов MP700 займет почетное место в лаборатории любого электронщика, как начинающего, так и профессионала!

Тестер электронных компонентов LCR-T4

Цифровой тестер LCR-T4 ESR — это универсальный измерительный прибор для автоматического определения и измерения параметров электронных компонентов: емкости конденсаторов, индуктивностей катушек, сопротивления резисторов, параметров транзисторов, диодов, стабилитронов, светодиодов и других комплектующих. ESR тестер сам определяет тип радиокомпонента, после чего выводит на экран его параметры и цоколевку. Очень удобно опознавать детали без обозначений, особенно для тех кто не хочет разбираться с маркировками компонентов. Если у Вас есть старые платы от компьютера или бытовой техники. Вы можете выпаять из них детали и при помощи ESR LCR тестера определить из параметры, для дальнейшего использования.

Характеристики LCR-T4 ESR:
— Питание от элемента типа "Крона": 9 В
— LCD дисплей с зеленой подсветкой: 128 x 64
— Регулировка контрастности дисплея: Да
— Время распознавания компонентов:

2 сек.
— Большие ёмкости и индуктивности измеряются до 1 мин.
— Ток в спящем режиме: 0,02 мА
— Диапазон измерения ёмкости конденсаторов: 25 пФ .. 100 мкФ
— Диапазон измерения индуктивности: 0.01 мГн .. 20 Гн
— Диапазон измерения сопротивления: 0 Ом .. 50 мОм
— Точность измерения сопротивления: 0,1 Ом
— Вычисление коэффициента усиления транзисторов: Да
— Автоматическое распознавание проводимости всех полупроводников и транзисторов: Да
— Автоматически распознавания цоколёвки транзисторов: Да
— Автоматически распознавания анод и катод диодов: Да
— Управляется одной кнопкой: Да
— Автоматический переход в спящий режим: Да
— Размеры: 72,5 x 60 мм
— Вес 44 гр.

Видео тестирования измерителя ESR

Ссылка на основную публикацию
Шторы_на_высокое_окно_в_лестничном_пролете
Портфолио "Интерьеры лестничных холлов" с окном " data-pinterest-text="Креативный дизайн интерьера лестницы в загородном доме. с окном" data-tweet-text="Креативный дизайн интерьера лестницы...
Что_сделать_из_свиного_шницеля
Как приготовить шницель из свинины Свиной шницель любят все, а особенно мужская часть населения. Это блюдо считается австрийским, и делается...
Что_сделать_из_спилов_дерева_своими_руками
Поделки из спилов: стильные и красивые варианты украшения сада и интерьера своими руками (130 фото) Любой творческий человек всегда хочет...
Шторы_роллы_на_окна_без_сверления
Купить рулонные шторы без сверления на окна Миниролло АБРИКОС рулонные шторы для окна. Характеристики: Тип: Рулонные шторы.Ширина: от 37 до...
Adblock detector