Что_такое_искусственное_освещение

Что_такое_искусственное_освещение

Что такое искусственное освещение

Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света или для освещения помещения в те часы суток, когда естественный свет отсутствует.

По конструктивному исполнению искусственное освещение может быть двух видов: общее и комбинированное, когда к общему освещению добавляется местное, концентрирующее световой поток непосредственно на рабочих местах. Общее освещение подразделяется на общее равномерное освещение (при равномерном распределении светового потока без учета расположения оборудования) и общее локализованное освещение (при распределении светового потока с учетом расположения рабочих мест).

Комбинированное освещение имеет ряд преимуществ перед общим освещением:

— уменьшается общий расход электрической энергии за счет уменьшения установленной мощности источников света из-за близкого расположения местных светильников к рабочей поверхности;

— происходит экономия электрической энергии за счет выключения светильников местного освещения на свободных рабочих местах;

— повышается видимость рельефных деталей за счет индивидуального выбора местных светильников;

— ограничиваются тени и блики на рабочих местах;

— имеется возможность создания высоких уровней освещенностина наклонных поверхностях.

Применение одного местного освещения внутри зданий не допускается. В промышленных предприятиях рекомендуется применять систему комбинированного освещения там, где выполняются точные зрительные работы, где оборудование создает глубокие, резкие тени или рабочие поверхности расположены вертикально. Система общего освещения может быть рекомендована в помещениях, где по всей площади выполняются однотипные работы, а также в административно-конторских, складских помещениях и проходных. Если рабочие места сосредоточены на отдельных участках, например, у разметочных плит, столов ОТК, целесообразно прибегать к локализованному размещению светильников общего освещения.

Искусственное освещение устраняет перечисленные выше недостатки естественного освещения и обеспечивает оптимальный световой режим.

Искусственное освещение подразделяется на рабочее, аварийное, охранное и дежурное.

Рабочее освещение является обязательным для всех помещений, зданий, а также участков открытых пространств. Оно служит для обеспечения нормальных условий работы, прохода людей, проезда транспорта.

Аварийное освещение разделяется, в своюочередь, на освещение безопасности и эвакуационное.

Освещение безопасности предусматривают в тех случаях, когда отключение рабочего освещения и связанное с этим нарушение обслуживания оборудования и механизмов может вызвать:

— взрыв, пожар, отравление людей;

— длительное нарушение технологического процесса;

— нарушение работы таких объектов, как электрические станции, узлы радио- и телевизионных передач и связи, диспетчерские пункты, насосные установки водоснабжения, канализации и теплофикации, установки вентиляции и кондиционирования воздуха для производственных помещений, в которых недопустимо прекращение работ, и т.п.;

— нарушение режима детских учреждений независимо от числа находящихся в них детей.

Эвакуационное освещение в помещениях или местах проведения работ вне зданий следует предусматривать:

— в местах, опасных для прохода людей;

— в проходах и на лестницах, служащих для эвакуации людей (есличисло эвакуируемых более 50 человек);

— по основным проходам производственных помещений, в которых работают более 50 человек;

— на лестничных клетках жилых зданий высотой шесть этажей и более;

— в производственных помещениях без естественного света и т.п.

Источники света аварийного освещения могут включаться одновременно со светильниками основного освещения и постоянно гореть или включаться автоматически только при прекращении питания нормального освещения.

Охранное освещение (при отсутствии специальных технических средств охраны) предусматривается вдоль границ территорий, охраняемых в ночное время.

Дежурное освещение — освещение помещений в нерабочее время. При необходимости часть светильников рабочего или аварийного освещения может использоваться для дежурного освещения

Для искусственного освещения рабочих зон электрическим светом используется прямой, отраженный и рассеянный свет (рис. 4.4).

Рис. 4.4. Виды светильников в зависимости от доли светового потока, приходящейся на нижнюю полусферу:

П — прямого света; Р — рассеянного света; О — отраженного света

Выбор тех или иных светильников по светораспределению зависит от характера выполняемых в помещении работ, возможности запыления, загрязнения воздушной среды, отражательной способности поверхностей в помещении. Например, светильники рассеянного и отраженного света применяются в таких помещениях, где требуется большая равномерность освещения, когда необходимо смягчить резкость теней или бликов на поверхностях с большим отражением и т.д.

Нормирование параметров искусственного освещения.

Согласно СНиП 23-09-95 нормируемыми параметрами искусственного освещения являются:

— освещенность рабочей поверхности Е, лк;

— показатель ослепленности Р, %;

— коэффициент пульсации освещенности Кп,%.

Освещенность рабочей поверхности — плотность светового потока на освещаемой им поверхности:

[1 лк], (4.4)

где Ф плотность светового потока, лм; S площадь поверхности, освещаемой световым потоком, м 2 .

В качестве нормативной величины освещенности задается ее минимальное значение, при котором выполнение определенной работы не вредит зрению работника. Емин задается для наиболее темного участка рабочей поверхности. Она устанавливается по характеристике зрительной работы, которая определяется зрительным напряжением при выполнении данной работы.

Всего выделяют восемь разрядов зрительных работ. Первые шесть разрядов (от работ очень высокой точности до грубых зрительных работ) классифицируются в зависимости от наименьшего размера объекта различения (толщина метки на шкале прибора, самая тонкая линия чертежа, трещина в изделии и т.п.), контраста объекта различения с фоном (малый, средний, большой) и характеристики фона (светлый, средний и темный). VII разряд устанавливает требования для работ со светящимися материалами и изделиями в горячих цехах, VIII- для общего наблюдения за ходом работ.

Показатель ослепленности — критерий оценки слепящего действия осветительной установки, определяемый выражением

где S — коэффициент ослепленности, равный отношению пороговых разностей яркости при наличии и отсутствии слепящих источников в поле зрения. В производственных помещениях показатель ослепленности не должен превышать 20-40 % в зависимости от разряда зрительной работы.

При освещении производственных помещений газоразрядными лампами, питаемыми переменным током промышленной частоты (50 Гц), ограничивается глубина пульсации освещенности.

Коэффициент пульсации освещенности — критерий оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током, выражающийся формулой

, (4.6)

где Емакс, Емин — соответственно максимальное и минимальное значения освещенности за период ее колебания, лк; Ecр — среднее значение освещенности за этот же период, лк.

Величина коэффициента пульсации в зависимости от системы освещения и характера выполняемой работы не должна превышать 10-20 % (при работах, связанных с наблюдением за видеотерминалами ЭВМ, Кп — не более 5 %).

В настоящее время для искусственного освещения применяются следующие источники света:

— лампы накаливания, включая галогенные;

— трубчатые люминесцентные газоразрядные лампы низкого давления;

— дуговые ртутные люминесцентные газоразрядные лампы высокого давления;

— дуговые натриевые газоразрядные лампы;

— дуговые ртутные галогенные лампы.

Газоразрядные люминесцентные лампы рекомендуется применять в следующих случаях:

— при необходимости различать цвета;

— при работах, связанных с длительным напряжением зрения;

— в производственных помещениях с непрерывным циклом производства или работами в три смены;

— в детских и школьных учреждениях;

— в помещениях, где освещение используется в качестве архитектурного оформления интерьеров.

Недостатком наиболее распространенных люминесцентных ламп является пульсация их светового потока, глубина колебания которого может достигать 55 %. Пульсация светового потока, кратная частоте переменного тока, может вызвать в определенных случаях «стробоскопический эффект», нарушающий правильное зрительное восприятие движущихся предметов, когда вращающийся предмет может казаться неподвижным. Пульсация светового потока приводит к быстрому утомлению зрения. В современных многоламповых светильниках с помощью специальных электрических схем подключения ламп удается устранить этот недостаток.

Для расчета осветительной установки при равномерном размещении светильников общего освещения и горизонтальной рабочей поверхности основным является так называемый метод коэффициента использования светового потока или метод коэффициента использования осветительной установки. При этом методе учитывается как световой поток источников света, так и световой поток, отраженный от стен, потолка и других поверхностей помещения.

Расчет ведется по формуле:

(4.7)

где Фл — световой поток одного светильника, лм; Ен — нормированная освещенность, лк; S -площадь помещения, м 2 ; Z = 1,15 — коэффициент, учитывающий отношение средней освещенности к минимальной, при освещении линиями люминесцентных светильников Z = 1,1; К3 — коэффициент запаса, принимаемый в зависимости от загрязненности воздуха в помещении; N-число светильников; h— коэффициент использования светового потока.

Коэффициент использования светового потока определяется по светотехническим таблицам. Он зависит от КПД и кривой распределения силы света светильника, коэффициентов отражения потолка, пола и стен, высоты подвеса светильника над расчетной поверхностью и конфигурации помещения, которая определяется индексом (показателем) помещения:

(4.8)

где а, b – ширина и длина помещения, м; hp – высота подвеса светильника над расчетной поверхностью, м.

Минимальная требуемая освещенность устанавливается по СНиП 23-05-95 или отраслевым нормам. Число светильников подбирается с учетом оптимального их расположения. По требуемому световому потоку подбирается ближайшая стандартная лампа, определяется ее мощность, а затем мощность всей осветительной установки.

Для расчета локализованного и местного освещения горизонтальных и наклонных поверхностей и освещения в тех случаях, когда отраженным светом можно пренебречь, применяется точечный метод, где используется формула

(4.9)

где Е – освещенность, лк; I – сила света в направлении от источника на данную точку рабочей поверхности, кд; a – угол между нормалью к рабочей поверхности и направлением светового потока на источник; К3 – коэффициент запаса; hр – высота подвеса светильника над рабочей поверхностью, м.

Читайте также:  Установка_откосов_на_пластиковые_окна_из_гипсокартона

Искусственное освещение

Искусственное освещение предусматривается в помещениях, в которых испытывается недостаток естественного света, а также для освещения помещения в те часы суток, когда естественная освещенность отсутствует.

По принципу организации искусственное освещение можно разделить на два вида: общее и комбинированное.

Общее освещение предназначено для освещения всего помещения, оно может быть равномерным или локализованным. Общее равномерное освещение создает условия для выполнения работ в любом месте освещаемого пространства. При общем локализованном освещении светильника размещают в соответствии с расположением оборудования, что позволяет создавать повышенную освещенность на рабочих местах.

Комбинированное освещение состоит из общего и местного. Его целесообразно устраивать при работах высокой точности, а также при необходимости создания в процессе работы определенной направленности светового потока. Местное освещение предназначено для освещения только рабочих поверхностей и не создает необходимой освещенности даже на прилегающих к ним участкам. Оно не может быть стационарным и переносным. Применение только местного освещения в производственных помещениях запрещается, так как резкий контраст между ярко освещенными и неосвещенными местами утомляет зрение, замедляет скорость работы и нередко является причиной несчастных случаев.

По функциональному назначению искусственное освещение подразделяется на рабочее, аварийное, эвакуационное и охранное.

Рабочее освещение предусматривается для всех помещений производственных зданий, а также участков открытых пространств, предназначенных для работы, прохода людей и движения транспорта.

Аварийное освещение в помещениях и на местах производства работ необходимо предусматривать, если отключение рабочего освещения и связанное с этим нарушение технологического процесса или работы объектов жизнеобеспечения. Наименьшая освещенность, создаваемая аварийным освещением, должна составлять 5% освещенности, нормируемой для рабочего освещения, но не менее 2 лк внутри зданий и не менее 1 лк для территорий предприятий.

Эвакуационное освещение следует предусматривать в местах, отведенных для прохода людей, в проходах и на лестницах, служащих для эвакуации людей в количестве более 50 человек. Это освещение должно обеспечивать на полу основных проходов (или на земле) и на ступенях лестниц освещенность не менее 0,5 лк в помещениях и 0,2 лк на открытой территории.

Охранное освещение предусматривается вдоль границ территории, охраняемой в ночное время. Охранное освещение должно обеспечивать освещенность не менее 0,5 лк на уровне земли.

Источники искусственного освещения

В качестве источников искусственного освещения применяются лампы накаливания и газоразрядные лампы.

В лампах накаливания источником света является раскаленная вольфрамовая проволока. Эти лампы дают непрерывный спектр излучения с повышенной (по сравнению с естественным светом) интенсивностью в желто-красной области спектра. По конструкции лампы накаливания бывают вакуумные, газонаполненные, бесспиральные (галогенные).

Общим недостатком ламп накаливания является сравнительно небольшой срок службы (менее 2000 часов) и малая световая отдача (отношение создаваемого лампой светового потока к потребляемой электрической мощности) (8-20 лм/Вт). В промышленности они находят применение для организации местного освещения.

Наибольшее применение в промышленности находят газоразрядные лампы низкого и высокого давления. Газоразрядные лампы низкого давления, называемые люминесцентными, содержат стеклянную трубку, внутренняя поверхность которой покрыта люминофором, наполненную дозированным количеством ртути (30-80 мг) и смесью инертных газов под давлением около 400 Па. На противоположных концах трубки размещаются электроды, между которыми, при включении лампы в сеть, возникает газовый разряд, сопровождающийся излучением преимущественно в ультрафиолетовой области спектра. Это излучение, в свою очередь, преобразуется люминофором в видимое световое излучение. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью.

В последние годы появились газоразрядные лампы низкого давления со встроенным высокочастотным преобразователем. Газовый разряд в таких лампах (называемый вихревым) возбуждается на высоких частотах (десятки кГц) за счет чего обеспечивается очень высокая светоотдача.

К газоразрядным лампам высокого давления (0,03-0,08 МПа) относят дуговые ртутные лампы (ДРЛ). В спектре излучения этих ламп преобладают составляющие зелено-голубой области спектра.

Основным достоинством газоразрядных ламп является их долговечность (свыше 10000 часов), экономичность, малая себестоимость изготовления, благоприятный спектр излучения, обеспечивающий высокое качество цветопередачи, низкая температура поверхности. Светоотдача этих ламп колеблется в пределах от 30 до 105 лм/Вт, что в несколько раз превышает светоотдачу ламп накаливания.

Нормирование искусственного освещения

Наименьшая освещенность рабочих поверхностей в производственных помещениях устанавливается в зависимости от характеристики зрительной работы и регламентируется строительными нормами и правилами СНиП 23-05-95 * «Естественное и искусственное освещение».

Характеристика зрительной работы определяется минимальным размером объекта различения, контрастом объекта с фоном и свойствами фона.

Объект различения – рассматриваемый предмет, отдельная его часть или дефект, которые следует контролировать в процессе работы.

Фон – поверхность, прилегающая непосредственно к объекту различения, на которой он рассматривается. Фон считается: светлым при коэффициенте отражения () светового потока поверхностью более 0,4; средне светлым при коэффициенте отражения от 0,2 до 0,4; темным при коэффициенте отражения менее 0,2.

Контраст объекта различения с фоном (К) определяется отношением абсолютной величины разности яркостей объекта В и фона Вф к наибольшей их этих двух яркостей. Контраст считается большим — при значениях К более 0,5; средним — при значениях К от 0,2 до 0,5; малым — при значениях К менее 0,2.

В соответствии со СНиП 23-05-95 все зрительные работы делятся на 8 разрядов в зависимости от размера объекта различения и условий зрительной работы. Допустимые значения наименьшей освещенности рабочих поверхностей в производственных помещениях в соответствии со СНиП 23-05-95 приведены в приложении 1.

Кроме цветности источников света и цветовой отделки интерьера, влияющих на субъективную оценку освещения, важным параметром, характеризующим качество освещения, является коэффициент пульсации освещенности Кп:

,

где Емакс – максимальное значение пульсирующей освещенности на рабочей поверхности;

Емин – минимальное значение пульсирующей освещенности;

Еср – среднее значение освещенности.

Пульсации освещенности на рабочей поверхности, не только утомляют зрение, но и могут вызывать неадекватное восприятие наблюдаемого объекта за счет появления стробоскопического эффекта. Стробоскопический эффект – кажущееся изменение или прекращение движения объекта, освещаемого светом, периодически изменяющимся с определенной частотой. Например, если вращающийся белый диск с черным сектором освещать пульсирующим световым потоком (вспышками), то сектор будет казаться: неподвижным при частоте fВсп=fВвращ, медленно вращающимся в обратную сторону при fВсп>fВвращ, медленно вращающимся в ту же сторону при fВсп * коэффициент пульсации освещенности Кп нормируется в зависимости от разряда зрительных работ в сочетании с показателем ослепленности Р:

,

где s – коэффициент ослепленности, определяемый как:

,

где Bпор – пороговая разность яркости объекта и фона при обнаружении объекта на фоне равномерной яркости;

(Bпор)S –то же при наличии в поле зрения блеского (яркого) источника света.

На освещенность рабочих поверхностей в производственном помещении влияют отражение и поглощение света стенами, потолком и другими поверхностями, расстояние от светильника до рабочей поверхности, состояние излучающей поверхности светильника, наличие рассеивателя света и т.д. Вследствие этого полезно используется лишь часть светового потока, излучаемого источником света.

Коэффициент использования осветительной установки

Расчет искусственного освещения предусматривает: выбор типа источника света, системы освещения и, светильника, проведение светотехнических расчетов, распределение светильников и определение потребляемой системой освещения мощности. Величина, характеризующая эффективность использования источников света, называется – коэффициентом использования светового потока или коэффициентом использования осветительной установки () и определяется как отношение фактического светового потока (Fфак ) к суммарному световому потоку (Fамп) используемых источников света, определенному по их номинальной мощности в соответствии с нормативной документацией:

,

Значение фактического светового потока Fфакт можно определить по результатам измерений в помещении средней освещенности Еср по формуле:

,

где S – площадь помещения, м 2 .

При проектировании освещения для оценки светового потока Fфакт используется формула:

,

где Е – нормируемая освещенность, лм;

Kз – коэффициент запаса, учитывающий старение ламп, запыление и загрязнение светильников (обычно Kз – 1,3 для ламп накаливания и 1,5 для люминесцентных ламп);

Z – коэффициент неравномерности освещения (обычно Z = 1,1-1,2).

Отражающие свойства поверхностей помещения можно учесть с помощью коэффициента отражения светового потока . В случае равномерного диффузного отражения, когда отраженный световой поток рассеивается с одинаковой яркостью во всех направлениях, яркость участка равномерно диффузно отражающей поверхности равна:

,

где Е – освещенность поверхности.

Измерить освещенность, создаваемую различными источниками света и сравнить с нормируемыми значениями. По измеренным значениям освещенности определить коэффициент использования осветительной установки. Измерить и сравнить коэффициенты пульсаций освещенности, создаваемой различными источниками света, оценить зависимость коэффициента пульсаций освещенность от способа подключения ламп к фазам трехфазной сети.

Описание лабораторной установки

Лабораторная установка состоит из макета производственного помещения, оборудованного различными источниками искусственного освещения, и люксметра-пульсметра для измерения значений освещенности и коэффициента ее пульсаций. Макет и люксметр-пульсметр устанавливают на стол лабораторный.

Внешний вид макета представлен на рисунке 2.

Макет имеет каркас 1 из алюминиевого профиля, пол 2, потолок 3, боковые стенки являются съемными и могут устанавливаться любой из двух сторон внутрь макета помещения, фиксируясь в проемах каркаса с помощью магнитных защелок. Одна сторона стенок окрашена в светлые тона, другая – в темные тона, при этом нижняя окрашенная половина стенки темнее верхней.

Передняя стенка 5 жестко вмонтирована в каркас и выполнена из тонированного прозрачного стекла. В передней нижней части каркаса 1 предусмотрено окно для установки измерительной головки 6 люксметра-пульсметра 7 внутрь каркаса.

Читайте также:  Механизм_подъема_кровати_как_собрать

На полу 2 размещен вентилятор 8 для наблюдения стробоскопического эффекта и охлаждения ламп в процессе работы.

На потолке 3 размещены 7 патронов, в которых установлены две лампы накаливания 9, три люминесцентные лампы 10 типа КЛ9, галогенная лампа 11 и люминесцентная лампа 12 типа СКЛЭН с высокочастотным преобразователем.

Вертикальная проекция ламп отмечена на полу 2 цифрами, соответствующими номерами ламп на лицевой панели макета.

Включение электропитания установки производится автоматом защиты, находящимся на задней панели каркаса, и регистрируется сигнальной лампой, расположенной на передней панели каркаса.

На передней панели каркаса (рисунок 3) расположены органы управления и контроля, в том числе:

– лампа индикации включения напряжения;

– переключатель для включения вентилятора;

– переключатели (1-7) для включения ламп.

Электропитание ламп накаливания и люминесцентных ламп осуществляется от разных фаз. Схема позволяет включать отдельно каждую лампу с помощью соответствующих переключателей, расположенных на передней панели каркаса На задней панели каркаса расположен автомат защиты сети и сдвоенная розетка с напряжением 220 В для подключения измерительных приборов.

Люксметр-пульсметр состоит из блока обработки информации 1 (рисунок 4) на лицевой панели которого расположен жидкокристаллический индикатор, кнопки питания «ВКЛ/ВЫКЛ», кнопка управления «HOLD», кнопка индикатора «Подсветка», разъем типа DB-9. На задней стенке блока обработки сигналов расположена крышка батарейного отсека. Фотоприемный элемент с корригирующим фильтрами, формирующими спектральные характеристики, располагаются в фотометрической головке 2 (рисунок 4). При включенном питании прибор работает как люксметр-пульсметр (ТКА-ПКМ) и позволяет измерять освещенность в

диапазоне от10 до 200000 лк и коэффициент пульсации в диапазоне от 1 до 100%.

Для измерения характеристик излучения необходимо расположить фотометрическую головку прибора в плоскости измеряемого объекта.

Для проведения измерений прибором «ТКА-ПКМ» необходимо включить его кнопкой «ВКЛ/ВЫКЛ». На экране после включения появится надпись фирмы производителя и название прибора. В ходе измерения в правом поле строки загорается символ «Батарейка», информирующий о емкости батареи питания.

Для правильного обнуления прибора произвести затемнение датчика прибора и нажать кнопку «HOLD». Процесс обнуления сопровождается надписью на жидкокристаллическом индикаторе «ПОДОЖДИТЕ, ИДЕТ ИЗМЕРЕНИЕ».

Засветка измерительной части во время обнуления приводит к неправильным измерениям впоследствии!

После пропадания предупреждающей надписи прибор переходит в основной режим измерений. Первая строка выводит текущую освещенность в лк (клк) «Е=», во второй строке отображается значение коэффициента пульсации светового потока в % «Кп=».

В случае измерения освещенности, необходимо расположить фотометрическую головку параллельно плоскости измеряемого объекта (при этом на окно фотоприемника не должна падать тень от оператора, производящего измерения, а также посторонних предметов). Подождать 3 секунды и считать с цифрового индикатора измеренное значение. При увеличении сигнала, создаваемого источником светового потока, в строке Е происходит автоматический переход численного значения освещенности в клк. При выходе за пределы измерений освещенности появится надпись «ОСВЕЩЕНИЕ ИЗБЫТОЧНО».

Для запоминания измеренного показания на индикаторе прибора необходимо кратковременно нажать кнопку «HOLD». Для продолжения измерений еще раз нажать кнопку «HOLD».

Если во время работы прибора появится надпись: «ЗАМЕНИТЕ БАТАРЕЙКУ», то необходимо произвести замену элемента питания.

По окончании измерений, прибор выключается, нажатием на кнопку «ВКЛ/ВЫКЛ».

Требования безопасности при выполнении лабораторной работы

К работе допускаются студенты, ознакомленные с устройством лабораторной установки, принципом действия и мерами безопасности при проведении лабораторной работы.

Для предотвращения перегрева установки при длительной работе ламп необходимо включить вентилятор.

После проведения лабораторной работы отключить электропитание стенда и люксметра-пульсметра.

Порядок проведения лабораторной работы

Установить стенки макета производственного помещения таким образом, чтобы стороны, окрашенные в темные тона, были обращены внутрь помещения.

Включить установку с помощью автомата защиты, находящегося на задней панели каркаса.

Включить поочередно лампы (выбор ламп производится по заданию преподавателя).

Произвести измерение освещенности и коэффициента пульсации для каждой включенной лампы с помощью люксметра-пульсометра не менее чем в пяти точках макета производственного помещения (в центре и углах пола), определить среднее значение освещенности Еср.

Сравнить полученные в результате измерений значения освещенности и коэффициента пульсации с допустимыми значениями (разряд зрительных работ принять по указанию преподавателя)

Установить стенки макета производственного помещения таким образом, чтобы стороны, окрашенные в светлые тона, были обращены внутрь помещения.

Произвести измерение освещенности не менее чем в пяти точках макета производственного помещения, определить среднее значение освещенности.

Сравнить полученные в результате измерений значения освещенности и коэффициента пульсации с допустимыми значениями (разряд зрительных работ принять по указанию преподавателя)

По результатам измерений освещенности для варианта с темной и светлой окраской стен вычислить значение фактического светового потока Fфакт по формуле:

,

где Еср –среднее значение освещенности, лк;

S – площадь макета помещения, м 2 .

Вычислить коэффициент использования осветительной установки для варианта с темной и светлой окраской стен по формуле:

.

Суммарный световой поток Fламп выбрать по номинальной мощности для каждого типа ламп по таблице 1.

Искусственное освещение

Искусственное освещение осуществляется с помощью различных видов источников света. Искусственное освещение на промышленных, гражданских объектах и строительных площадках по своему функциональному назначению подразделяется на рабочее,дежурное, аварийное,эвакуационное,охранное.

Рабочее освещение необходимо предусматривать для различных зданий, сооружений, участков пространств, предназначенных для работы, движения транспорта и прохода людей. Рабочее освещение может быть общее, местное и комбинированное (к общему освещению добавляется местное).

Общее освещение предназначено для освещения всего помещения. Общее рабочее освещение в зависимости от вида работ может быть равномерным или локализованным. При проектировании общего освещения в зоне рабочих мест отношение максимальной освещенности к минимальной не должно превышать для работ I – III разрядов при люминесцентных лампах 1,5; при других источниках света – 2; для работ V – VII разрядов – соответственно 1,8 и 3.

Местное освещение предназначено для освещения только рабочей поверхности, оно может быть стационарным и переносным. Запрещается использовать только местное освещение, т.к. оно создает быструю утомляемость за счет неравномерности освещения.

Комбинированное освещение применяется для создания достаточно высоких уровней освещенности на рабочих поверхностях благодаря одновременному использованию системы общего и местного освещения.

Аварийное освещение предусматривается в зданиях и местах производства работ, если отключение рабочего освещения приведет к нарушению технологии работ, обслуживанию машин и механизмов, режима работ детских медицинских учреждений, взрывам, пожарам, травмам, отравлениям людей и т.д. При аварийном режиме освещения минимальная освещенность рабочих поверхностей территорий предприятий, требующих обслуживания, должна быть не менее 5% нормируемого рабочего освещения, но не менее 2 лк внутри зданий и не менее 1 лк для территории предприятий.

Эвакуационное освещение в помещениях или в местах производства работ предусматривается, если в помещении одновременно могут, находится 100 и более человек, если в производственных помещениях, где на период отключения рабочего освещения, возможно травмирование людей, по основным проходам, лестницам производственных помещений, при числе эвакуирующихся более 50 человек, в лестничных клетках жилых домов высотой 6 этажей и более. Эвакуационное освещение должно обеспечивать на полу или земле в помещениях не менее 0,5 лк.; на открытых территориях – 0,2 лк.

Охранное освещение должно предусматриваться вдоль границ территории, охраняемых в ночное время. Освещенность должна быть 0,5 лк на уровне земли в горизонтальной плоскости или на уровне 0,5 м от земли.

Освещение открытыми лампами является вредным, т.к. оно не защищает от слепящей яркости накаленной нити лампы, рассеивает поток во все стороны. Поэтому вместе с лампой применяется специальная арматура. Все вместе называется светильником.

Светильники подразделяются по назначению на внутренние, наружные, специальные.По распределению света светильники делятся на:

1. Светильники прямого света, дающие световой поток вниз, на стены и на пол ("Альфа", «Бета","Универсал", "Глубокоизлучатель");

2.Светильники отражающего света, посылающие световой поток на потолок, отражаясь от которого, освещают помещение;

3. Светильники рассеянногосвета «Люцетта" (ЛЦ),"Молочный шар" и др. (рис.2.4.7)

Для различных помещений в зависимости от технологии производства выбираются, регламентируются определенные типы светильников. Например, в пыльных помещениях могут применяться светильники типа А, Ум, Уп, РН и т.д.

Выбор светильников должен производиться с учетом следующих факторов:

а) безопасности, долговечности и стабильности светотехнических характеристик в данной среде;

б) энергетической экономичности;

в) качества освещения;

г) удобства обслуживания;

д) внешнего вида и стоимости.

В основном, в качестве искусственного освещения применяются лампы накаливания и газоразрядные лампы.

Рис. 2.4.7 Светильники ламп накаливания:а – «Универсал» (У, УМ); б – глубокоизлучатель эмалированный (ГЭ); в – глубокоизлучатель зеркальный (ГЗ); г – кососвет; д – люцета с сплошным стеклом (НСП-07); е – шар матового стекла (ПО-02); ж– вывозащитный герметичный(ВЗГ); з – промышленный уплотненный(ПУ); и – прямого света «Альфа».

Лампы накаливания являются тепловыми источниками света, они характеризуются низкой стоимостью, простотой конструкции, удобством в работе. К недостаткам следует отнести высокую яркость (ослепляющее действие), низкую световую отдачу (7 – 20 лм/Вт), малые сроки эксплуатации (до 2,5 тыс. часов), высокая температура нагрева (140°С и выше), пожароопасность, неестественное освещение (желто-красное излучение), неприменимость при виброударной работе механизмов.

Читайте также:  Как_распрямить_кожаную_куртку

Лампы накаливания используются, в основном, для освещения помещений и местном освещении при временных работах.

Газоразрядные лампы в результате люминесценции вследствие электрических разрядов в инертных газах и парах металлов излучают свет оптического диапазона.

Они экономичны (срок эксплуатации до 10 тыс. часов), температура нагрева до 60° С, высокая световая отдача (90 – 100 лм/Вт), световой поток может излучаться различного спектра путем подбора люминофора и паров инертных газов

Основные недостатки: пульсация светового потока, сложная схема включения, шум при включении, относительно высокая стоимость.

При использовании в осветительных установках газоразрядных источников света одним из основных показателей качества освещения является допустимый уровень пульсации светового потока. Глубину пульсации принято оценивать коэффициентом пульсации освещенности Кn (%). Этот коэффициент является критерием оценки относительной глубины колебаний освещенности в результате изменения во времени светового потока газоразрядных ламп при питании их переменным током.

(2.4.10)

где Еmax, Emin – соответственно максимальное и минимальное значения освещенности за период ее колебания, [лк.];

Еср – среднее значение освещенности за этот же период, [лк].

Сегодня выпускаются люминесцентные газоразрядные лампы, которые отличаются по спектру излучения. Это лампы дневного света (ЛД), лампы дневного освещения с улучшенной передачей цвета (ЛДЦ), типа ЛЭ – близкие по спектру к естественному солнечному свету, ЛБ – лампы белого цвета (с малым излучением сине-фиолетовых лучей). Лампы холодно-белого света ЛХБ, ЛХЭ имеют лучшую передачу света, чем лампы ЛБ и ЛД, лампы тепло-белого света ЛТБ (светло-розово-белый оттенок).

Газоразрядные лампы бывают низкого и высокого давления. Лампы низкого давления называются люминесцентными и применяются в быту и на производстве.

Газоразрядные лампы высокого давления применяются в условиях, когда требуется высокая световая отдача и стойкость в условиях окружающей среды: металлогенные (МГЛ), дуговые ртутные (ДРЛ), натриевые (ДНаТ).

Кроме этого выпускаются лампы специального назначения (бактерицидные и др.).

По степени защиты светильника от влияния окружающей среды подразделяются на пылезащитные (открытые), пылезащищенные и пыленепроницаемые, влагозащищенные, водонепроникающие или герметические, взрывопожарозащитные.

Основными характеристиками источников искусственного освещения являются: электрическая мощность лампы, [Вт]; световой поток, [лм]; световая отдача, [лм/Вт]; напряжение питания, [В]; срок эксплуатации, [тыс. часов]; спектральный состав света; стоимость и т.д.

К светотехническим характеристикам светильников относятся коэффициент полезного действия, кривые силы света, защитный угол, светораспределение и т.д.

В табл. 2.4.4 и 2.4.5 приведены значения нормативной освещенности на рабочем месте в зависимости от размера зрительной работы, размеров объектов (фон, контрастность).

Степень защиты глаз от прямых лучей света определяется защитным углом, который образуется горизонталью, проходящей через центр светящего тела, и пограничной линией, соединяющей крайнюю точку светящего тела и противопожарный край отражателя. В пределах защитного угла лампа полностью закрыта от глаз работающего краем арматуры.

(2.4.11)

где hc – расстояние от нити накаливания лампы до края арматуры по вертикали;

R – горизонтальное расстояние от края арматуры до центра нити накаливания;

r – горизонтальное расстояние от центра нити накаливания до ее края.

Рис.2.4.8. Методы расчета искусственного освещения

Расстояние между светильниками или наиболее выгодное их расположение λ определяется соотношением (рис.2.4.8):

(2.4.12)

где L – расстояние между светильниками;

h – высота подвески светильника.

Отсюда: (2.4.13)

Наиболее выгодное расположение светильников λ с учетом светораспределения может быть определено из таблиц по справочникам. Практически расстояние между светильниками принимают L = 1,5. 2h.

При проектировании искусственного освещения применяются три метода: точечный, метод использования светового потока и метод расчета по удельной мощности (рис. 2.4.8).

Рассмотрим пример применения метода использования светового потока F, который учитывает световой поток, отраженный от источника света, стен, потолка, элементов оборудования.

Нормированное освещение на рабочих поверхностях при искусственном освещении по зрительным параметрам (газоразрядные лампы)

Зрительная работа Наименьший размер объекта различия, мм Разряд зрительной работы Подразряд зрительной работы Контраст объекта различия с фоном Характеристика фона Освещенность, лк
при комбинированном освещении при общем освещении
Наивысшая точность менее 0,15 б малый средний средний темный
в малый средний большой светлый средний темный
г средний большой большой светлый светлый средний
Очень высокая точность от 0,15 до 0,3 II а малый темный
б малый средний средний темный
в малый средний большой светлый средний темный
г средний большой большой светлый светлый средний
Высокая точность выше 0,3 до 0,5 III а малый темный
б малый средний средний темный
в малый средний средний светлый средний темный
г средний большой Большой светлый светлый средний
Средняя точность выше 0,5 до 1,0 IV а малый темный
б малый средний средний темный
в малый средний большой светлый средний темный
г средний большой большой светлый светлый средний
Малая точность выше 1,0 до 5,0 V а малый темный
б малый средний средний темный
в малый средний большой светлый средний темный
г средний большой большой светлый светлый средний
Грубая (очень малая точность больше 0,5 VI Независимо от характеристик фона и контраста объекта с фоном
Работа с материалами, которые светятся, и изделиями в горячих цехах больше 0,5 VII Независимо от характеристик фона и контраста объекта с фоном
Общее наблюдение за ходом производственного процесса: при периодическом нахождении людей в помещении VIII а б в Независимо от характеристик фона и контраста объекта с фоном

Нормированная освещенность на рабочих местах вспомогательных строений и помещений

Помещение Искусственное освещение Норм, лк Естественное освещение КЕО (ен III ), %
при верхнем или комбинированном освещении При боковом освещении
в зоне со стойким снеговым покровом на остальной территории СНГ
Проектные залы и комнаты, конструкторские бюро 1,6
Машинописные и машиносчетные бюро 1,2 1,5
Читальные залы, кабинеты 0,8
Макетные столярные и ремонтные мастерские 1,2 1,4
Конференц-залы, залы заседаний 0,4 0,5
Аналитические лаборатории 1,2 1,5
Весовые 1,2 1,5
Моечные 0,4 0,5
Умывальники; туалеты; комнаты для курения; душевые; гардеробные; помещения для сушки, обеспыливания, обезвреживания одежды и обуви, для обогрева работающих. 0,2 0,3
Кабинеты врачей, перевязочная 0,8
Процедурные кабинеты 0,4 0,5
Помещения для личной гигиены женщин 0,2 0,3
Вестибюли и гардеробные уличной одежды 0,3 0,4
Главные лестничные клетки 0,2 0,2
Другие лестничные клетки 0,1 0,1
Главные коридоры и проходы 0,1 0,1
Другие коридоры и проходы 0,1 0,1
Машинные отделения лифтов и помещений для фреоновых установок 30 *

*- норма для ламп накаливания

Необходимо определить расположение и число светильников с учетом мощности ламп накаливания в комнате длиной А=10 м, шириной В=6 м, высотой Н=З м. Коэффициенты отражения стен qc и потолка qп 70%. Согласно СНиП II-4-79 с учетом характера зрительной работы принимаем нормальную освещенность равной 200 лк; коэффициент запаса rз=1,3 (СНиП ΙΙ-4-79, табл. 3), отношение средней освещенности к минимальной z=1,1. Коэффициент, зависящий от типа светильника, a=1,5. Высота рабочего места hc =0,8 м; расстояние от потолка до нижней кромки светильника hc=0,6 м.

Оцениваем расчетную высоту подвеса светильника:

(2.4.14)

Находим индекс помещения i:

(2.4.15)

Расстояние между светильниками:

(2.5.15)

Расстояние от стены до светильника принимаем l=0,8 м. С учетом коэффициента светового потока (отношение потока, падающего на расчетную поверхность, к суммарному потоку всех ламп η=0,57) рассчитываем световой поток при числе светильников N=8.

(2.4.16)

На основании F выбираем тип и мощность ламп.

При расчете локализованного освещения обычно используется точечный метод, для чего необходимо знать, что µ – коэффициент влияния удаленных источников отраженного света и е – условная освещенность, [лк]. Первоначально е определяется по графикам пространственных изолюкс в зависимости от вида светильника, расположенного на расстоянии 1м имеющего световой поток лампы 1000 лм. Величина е в контрольной точке может быть замерена.

Освещение требует систематического ухода, правильной эксплуатации осветительной установки и контроля освещенности на рабочих местах не меньше одного раза в год.

В зависимости от специфики цехов складываются графики проверки состояния оконного стекла, светильников, електроарматури, их очищения и мытье. Вследствие продолжительной эксплуатации ламп их световой поток снижается до 25 %. Такие лампы надо своевременно заменять. Запрещается установления светильников, к комплекту которых входят неоднотннні газоразрядные лампы, а также те, которые имеют разный спектр и величину светового потока

Очищения светильников належит проводить не реже однажды на трех месяцы. Очищения оконных стекол световых отверстий проводится не реже двух раз на год для помещений с незначительным выделением пыли, и не меньше четырех раз с значительным выделением пыли.

Основным прибором для контроля и измерение освещенности на| рабочих местах есть люксметры типу Ю-16, Ю-17, Ю-116, Ю-117. Они отличаются границами измерения и оформлением. Принцип действия всех одинаковый и базируется на явлении фотоэлектрического эффекта.

Для автоматического контроля освещенности на рабочих местах устанавливаются фотодиоды ФД, которые указывают на недостаточную освещенность

Дата добавления: 2014-12-22 ; просмотров: 3120 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Ссылка на основную публикацию
Что_сделать_из_свиного_шницеля
Как приготовить шницель из свинины Свиной шницель любят все, а особенно мужская часть населения. Это блюдо считается австрийским, и делается...
Черника_от_поноса_детям
Как с помощью черники избавиться от поноса? Небольшие кустарники черники, достигающие всего полметра в высоту, оказывают колоссальный эффект в лечении...
Черно_белые_вислоухие_котята_фото
Окрасы шотландских кошек Окрасы шотландских кошек имеют разные расцветки. Шотландские коты являются знаменитыми из-за своей очаровательной внешности и разновидности цветов....
Что_сделать_из_спилов_дерева_своими_руками
Поделки из спилов: стильные и красивые варианты украшения сада и интерьера своими руками (130 фото) Любой творческий человек всегда хочет...
Adblock detector