Что_такое_индуктивный_датчик

Что_такое_индуктивный_датчик

Индуктивные датчики. Виды. Устройство. Параметры и применение

Индуктивные датчики – преобразователи параметров. Их работа заключается в изменении индуктивности путем изменения магнитного сопротивления датчика.

Большую популярность индуктивные датчики получили на производстве для измерения перемещений в интервале от 1 микрометра до 20 мм. Индуктивный датчик можно применять для замера уровней жидкости, газообразных веществ, давлений, различных сил. В этих случаях диагностируемый параметр преобразуется чувствительными компонентами в перемещение, далее эта величина поступает на индуктивный преобразователь.

Для замера давления применяются чувствительные элементы. Они играют роль датчиков приближения, предназначенные для выявления разных объектов бесконтактным методом.

Виды и устройство

Индуктивные датчики разделяются по схеме построения на 2 вида:

  1. Одинарные датчики.
  2. Дифференциальные датчики.

Первый вид модели имеет одну ветвь измерения, в отличие от дифференциального датчика, у которого две измерительные ветви.

В дифференциальной модели при изменении диагностируемого параметра изменяются индуктивности 2-х катушек. При этом изменение осуществляется на одинаковое значение с противоположным знаком.

Индуктивность катушки вычисляется по формуле: L = WΦ/I

Где W– количество витков; Ф – магнитный поток; I – сила тока, протекающего по катушке. Сила тока взаимосвязана с магнитодвижущей силой следующим отношением: I = Hl/W

Из этой формулы получаем: L = W²/Rm
Где R m = H*L/Ф – магнитное сопротивление.

Работа одинарного датчика заключается в свойстве дросселя, изменять индуктивность при увеличении или уменьшении воздушного промежутка.

Конструкция датчика включает в себя ярмо (1), витки обмотки (2), якорь (3), который фиксируется пружинами. По сопротивлению поступает переменный ток на обмотку. Сила тока в нагрузочной цепи вычисляется:

L – индуктивность датчика, rd – активное дроссельное сопротивление. Оно является постоянной величиной, поэтому изменение силы тока I может осуществляться только путем изменения составляющей индуктивности XL=IRн, зависящей от размера воздушного промежутка δ.

Каждой величине зазора соответствует некоторое значение тока, определяющего падение напряжения на резисторе Rн: Uвых=I*Rн – является сигналом выхода датчика. Можно определить следующую зависимость U вых = f (δ), при одном условии, что зазор очень незначительный и потоки рассеивания можно не учитывать, как и магнитное сопротивление металла Rмж в сравнении с магнитным сопротивлением зазора воздуха Rмв.

Окончательно получается выражение:

На практике активное сопротивление цепи несравнимо ниже индуктивного. Поэтому формула принимает вид:

Из недостатков одинарных можно отметить:
  • При эксплуатации датчика на якорь воздействует сила притяжения к сердечнику. Эта сила не уравновешена никакими методами, поэтому она снижает точность функционирования датчика, и вносит некоторый процент погрешности.
  • Сила нагрузочного тока зависит от амплитуды напряжения и ее частоты.
  • Чтобы измерить перемещение в двух направлениях, нужно установить первоначальное значение зазора, что доставляет определенные неудобства.

Дифференциальные индуктивные датчики объединяют в себе два нереверсивных датчика и изготавливаются в виде некоторой системы, которая состоит из 2-х магнитопроводов, имеющих два отдельных источника напряжения. Для этого чаще всего применяется разделительный трансформатор (5).

Дифференциальные датчики классифицируются по форме сердечника:
  • Индуктивные датчики с Ш-образной формой магнитопровода, выполненного в виде листов электротехнической стали. При частоте более 1 килогерца для сердечника используют пермаллой.
  • Цилиндрические индуктивные датчики с круглым магнитопроводом.

Форму датчика выбирают в зависимости от конструкции и ее сочетания с механизмом. Использование магнитопровода Ш-образной формы является удобным для сборки катушки и снижения габаритных размеров индуктивного датчика.

Для функционирования дифференциального датчика применяют питание от трансформатора (5), который имеет вывод от средней точки. Между этим выводом и общим проводом катушек подключают прибор (4). При этом воздушный промежуток находится в пределах от 0,2 до 0,5 мм.

Читайте также:  Как_слить_бойлер_ariston

При расположении якоря в средней позиции при равных промежутках индуктивные сопротивления обмоток (3 и 3′) равны. Значит, значения токов катушек также одинаковы, и общий полученный ток в устройстве равен нулю.

При малом отклонении якоря в любую сторону изменяется значение воздушных промежутков и индуктивностей. Поэтому прибор определяет ток разности I1-I2, который определен функцией перемещения якоря от средней позиции. Разность токов чаще всего определяется магнитоэлектрическим устройством (4), выполненным по типу микроамперметра со схемой выпрямления (В) на входе.

Полярность тока не зависит от изменения общего сопротивления катушек. При применении фазочувствительных схем выпрямления можно определить направление перемещения якоря от средней позиции.

Параметры
  • Одним из параметров индуктивных датчиков является диапазон срабатывания . По этому параметру выбирают датчики, однако он не настолько важен. В инструкции по датчику даны номинальные параметры питания при эксплуатации устройства при температуре +20 градусов. Постоянное напряжение для датчика – 24 В, а переменное 230 В. Обычно датчик работает в совершенно других условиях.
На практике при подборе датчика важны два показателя интервала срабатывания:

Показания первого вычисляются как +10% от 2-го при температуре 25-70 градусов. Показания 2-го отличаются от номинала на 10%. Интервал температуры при этом увеличивается с 18 до 28 градусов. Если при втором параметре применяется номинальное напряжение, то при первом есть разброс 85-110%.

  • Другим параметром является гарантированный предел срабатывания . Он колеблется от нуля до 81% от номинала.
  • Также следует учитывать параметры: повторяемость и гистерезис , который равен расстоянию между конечными позициями работы датчика. Его оптимальная величина равна 20% от эффективного интервала срабатывания.
  • Нагрузочный ток . Изготовители иногда производят датчики специального исполнения на 500 миллиампер.
  • Частота отклика . Этот параметр определяет наибольшую величину возможности переключения в герцах. Основные промышленные датчики имеют частоту отклика 1000 герц.
Методы подключения на схемах

Имеется несколько видов индуктивных датчиков с различным числом проводов для подключения. Рассмотрим основные виды подключений разных индуктивных датчиков.

  • Двухпроводные индуктивные датчики подключаются непосредственно в нагрузочную цепь. Это наиболее простой способ, однако в нем есть особенности. Для такого способа для нагрузки требуется номинальное сопротивление. Если это сопротивление будет больше или меньше, то устройство функционирует некорректно. При включении датчика на постоянный ток нельзя забывать о полярности выводов.
  • Трехпроводные индуктивные датчики наиболее популярны. В них имеется два проводника для подключения питания, а один для нагрузки.
  • Четырехпроводные и пятипроводные индуктивные датчики. У них два провода на питание, другие два на нагрузку, пятый проводник для выбора режима эксплуатации.
Цветовая маркировка

Маркировка проводников цветом является очень удобной для осуществления обслуживания и монтажа датчиков. Их выходные проводники промаркированы определенным цветом:

  • Минус – синий.
  • Плюс – красный.
  • Выход – черный цвет.
  • Второй проводник выхода – белый цвет.
Погрешности

Погрешность преобразования диагностируемого параметра влияет на способность выдачи информации индуктивным датчиком. Суммарная погрешность состоит из множества различных погрешностей.

  • Электромагнитная погрешность является случайной величиной. Она появляется вследствие индуцирования ЭДС в катушке датчика наружными магнитными полями. На производстве возле силовых электрических устройств существуют магнитные поля чаще всего частотой 50 герц.
  • Погрешность от температуры также является случайным значением, так как работа большого количества элементов датчика зависит от температуры и является значительной величиной, учитываемой при проектировании датчиков.
  • Погрешность магнитной упругости. Она появляется от нестабильности деформаций сердечника при сборке прибора, а также из-за изменения деформаций при работе. Влияние нестабильности напряжений в магнитопроводе образует нестабильность сигнала на выходе.
  • Погрешности устройства появляются по причине влияния измеряющей силы на деформации элементов датчика, а также влияния скачка усилия измерения на нестабильность деформации. Также на погрешность влияют люфты и зазоры в подвижных частях конструкции датчика.
Читайте также:  Снятие_с_осадка_виноградного_вина

Погрешность кабеля образуется от непостоянной величины сопротивления, деформации кабеля и его температуры, наводок электродвижущей силы в кабеле от внешних полей.

Электромагнитные параметры материалов и их свойства со временем меняются. Чаще всего процессы изменения свойств материалов происходят в первые 200 часов после термообработки сердечника магнитопровода. Далее эти свойства остаются теми же, и не влияют на полную погрешность датчика.

Что такое индуктивный датчик

PS. Платиновый провод при эксплуатации неизбежно загрязняется. Чтобы предотвратить такое загрязнение после того, как двигатель будет выключен, провод на одну секунду накаляется до температуры 1000 С. Вся пыль, которая на него налипла, моментально сгорает.

Терморезисторы изготовляют как из чистых металлов (платина, несколько хуже — медь и никель), так и из полупроводников.

По сравнению с металлическими терморезисторами более высокой чувствительностью обладают полупроводниковые терморезисторы (термисторы).

Служат для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.

Принцип действия индуктивных датчиков состоит в преобразовании линейного перемещения в изменение индуктивности катушки датчика.

Устройство и принцип работы индуктивных датчиков

Индуктивный датчик функционирует следующим образом (на примере датчика частоты вращения):

Принцип действия. В основе работы индуктивных датчиков частоты вращения лежит явление электромагнитной индукции. Датчики выполнены в виде катушек с магнитными сердечниками. При прохождении под сердечником зубца ферромагнитного диска (например, зубца венца маховика коленчатого вала двигателя) магнитный проток датчика изменяется, и в катушке датчика индуцируется электродвижущая сила. Амплитуда импульсов зависит от частоты вращения коленчатого вала и зазора между сердечником и зубцом маховика

Индуктивные преобразователи имеют множество различных конструкций:

а) индуктивный преобразователь переменной длиной воздушного зазора δ.

Характеризуется нелинейной зависимостью L = f(δ).

Такие преобразователи обычно применяют при перемещениях якоря на 0,01 — 5 мм.

б) индуктивный преобразователь с переменным сечением воздушного зазора. Имеет значительно меньшую чувствительностью, но линейную зависимость L = f(δ).

Эти преобразователи используют при перемещениях до 10 — 15 мм.

в) индуктивные преобразователи дифференциальные преобразователи, в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов.

Имеют более высокую чувствительность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов.

Области применения индуктивных датчиков.

1. Широкое применение индуктивные датчики находят в промышленности для измерения перемещений и покрывают диапазон от 1 мкм до 20 мм.

2. Для измерения давлений, сил, уровней расхода газа и жидкости и т. д. В этом случае измеряемый параметр с помощью различных чувствительных элементов преобразуется в изменение перемещения и затем эта величина подводится к индуктивному измерительному преобразователю.

Достоинства индуктивных датчиков:

— простота и прочность конструкции, отсутствие скользящих контактов;

— возможность подключения к источникам промышленной частоты;

— относительно большая выходная мощность (до десятков Ватт);

Недостатки индуктивных датчиков:

— точность работы зависит от стабильности питающего напряжения по частоте;

— возможна работа только на переменном токе.

Читайте также:  У_кошки_воспаленные_десна_что_делать

Примеры применения индуктивных датчиков:

1. Датчик положения коленчатого вала:

Датчик положения коленчатого вала установлен на кронштейне около шкива привода генератора (см. Фото-2).

Для генерации импульса синхронизации оборотов коленвала на шкиве отсутствуют два зуба (см.Фото-2 и Рис. 1).

Ocциллoгpамма напpяжения выхoднoгo cигнала иcпpавнoгo датчика пoлoжения кoленчатoгo вала индукциoннoгo типа пpи 1250 oб/мин.

Пpи пoвышении чаcтoты вpащения двигателя, чаcтoта импульcoв также увеличиваетcя.

Ocциллoгpамма напpяжения выхoднoгo cигнала иcпpавнoгo датчика пoлoжения кoленчатoгo вала индукциoннoгo типа пpи 2230 oб/мин.

2. Датчик положения распределительного вала.

3. Датчик скорости движения автомобиля -устанавливается на коробке переключения передач на механизме привода спидометра

4. Датчик крутящего момента (использование эффекта Холла).

Что такое индуктивный датчик?

При работе с различными технологиями при желании автоматизировать ряд действий обращаются к различным датчикам. В изделиях из металлов важную роль играет индуктивный датчик. Что он собой представляет и зачем необходим?

Что такое индуктивный датчик?

Принцип действия

Построение индуктивного датчика

  1. Генератор. Создаёт электромагнитное поле, которое необходимо для взаимодействия с объектом.
  2. Триггер Шмитта. Он обеспечивает гистерезис, когда происходит переключение.
  3. Усилитель. Занимается увеличением амплитуды сигнала, чтобы он достиг необходимого значения.
  4. Светодиодный индикатор. Информирует о состоянии выключателя. Также с его помощью обеспечивается контроль работоспособности и указывает на оперативность настройки.
  5. Компаунд. Необходим для защиты от попадания вовнутрь воды и твердых частиц.
  6. Корпус. С его помощью обеспечивается монтаж датчика и его защита от различных механических воздействий. Изготавливается из полиамида или латуни и комплектуется крепежными изделиями.

Определения

Когда необходимо использовать индуктивный датчик, следует разбираться и в терминологическом минимуме, который нужен для приятной и комфортной работы. Итак, что следует понимать:

  1. Активная зона. Это область перед чувствительной поверхностью индуктивного датчика, где наибольшим образом сконцентрировалось магнитное поле. Диаметр данной площади обычно равен размеру самого прибора.
  2. Номинальное расстояние переключения. Это теоретическая величина расстояния активной зоны, которая не учитывает разброс производственных параметров индуктивного датчика, температурный режим и подаваемое напряжение питания.
  3. Рабочий зазор. Это расстояние, которое гарантирует надежную работу прибора в определённом диапазоне напряжения и температуры.
  4. Поправочный коэффициент. Это показатель, который корректирует значение рабочего зазора, в зависимости от вида металла, из которого был создан объект воздействия.

Достоинства

  1. Прочность и простота конструкции, а также отсутствие скользящих контактов.
  2. Индуктивный датчик может быть подключен к источникам промышленной частоты.
  3. Имеют довольно большую выходную мощность, которая может составлять десятки Ватт.
  4. Обладают значительной чувствительностью.

Погрешности

  1. Погрешность, которая зависит от нелинейной характеристики. В приборе используется принцип индуктивного преобразования величины, что базируется на работе датчиков, которые имеют свой диапазон, из-за чего и возникает данная проблема.
  2. Температурная погрешность. Является случайной составляющей. Поскольку работа прибора зависит от температуры используемых датчиков, то погрешность может достигать значительных значений. Поэтому высокую важность имеет среда работы механизма. Работа индуктивного датчика обычно осуществляется при показателе в 25 градусов в хорошо вентилируемом помещении. Значительное изменение температуры в большее или меньшее значение является нежелательным.
  3. Погрешность из-за влияния других электромагнитных полей. Является случайной составляющей. Возникает из-за того, что на индуктивный датчик действуют внешние электромагнитные поля, которые могут сильно влиять на работу прибора. Чтобы избежать таких случаев, в промышленности электроустановки почти всегда используют частоту в 50 Гц.

Для минимизации вероятности возникновения погрешности необходимо качественно прорабатывать все нюансы.

Ссылка на основную публикацию
Что_сделать_из_свиного_шницеля
Как приготовить шницель из свинины Свиной шницель любят все, а особенно мужская часть населения. Это блюдо считается австрийским, и делается...
Черника_от_поноса_детям
Как с помощью черники избавиться от поноса? Небольшие кустарники черники, достигающие всего полметра в высоту, оказывают колоссальный эффект в лечении...
Черно_белые_вислоухие_котята_фото
Окрасы шотландских кошек Окрасы шотландских кошек имеют разные расцветки. Шотландские коты являются знаменитыми из-за своей очаровательной внешности и разновидности цветов....
Что_сделать_из_спилов_дерева_своими_руками
Поделки из спилов: стильные и красивые варианты украшения сада и интерьера своими руками (130 фото) Любой творческий человек всегда хочет...
Adblock detector